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CHAPTER 1: INTRODUCTION TO PORPHYRINS 

The growing use of porphyrins in organometallic chemistry is derived in part from 

the ease with which steric and electronic properties of the porphyrin ligand can be varied. 

For example, by incorporating bulky substituents into a molecule containing a reactive 

species both organic' and inorganic^ species have been stabilized. An illustration of a 

poiphyrin stabilizing a reactive titanium(II) center has been recently reported.' The steric 

interactions around the metal binding site can be changed by placing organic substituents on 

the ortho positions of the mejo-tetra-arylpoiphyrins. An example of such a poiphyrin is 

ffie^o-tetramesitylporphyrin (TMP), Figure 1.1. When a metal is bound by TMP, further 

ligation in the axial positions is inhibited due to steric interaction between the ortho methyls 

of the poiphyrin and these potential ligands. 

Afe^o-tetra-arylpoiphyrins have several useful features. They are easily prepared by 

NH N NH N 

(a) (b) 

Figure 1.1. /ne^o-tetra-arylporphryins; a) mejo-tetra-p-tolylporphryins b) mejo-tetra-

mesitylpoiphryins 



www.manaraa.com

2 

the procedure of Adler from pyrrole and aryl aldehydes/ This method is general in its 

utility and a variety of substituted poiphyrins can be prepared. Once the macrocycle has 

been prepared, it is thermally stable and can be sublimed at temperatures of 350 'C. This 

semi-rigid, planar ligand has a chelating diameter of approximately 4 Â and can accomodate 

a wide range of metals and metalloids. Because of the common metal coordination geometry 

provided by the porphyrin ligand, comparisons of metalloporphyrin chemistry across the 

periodic table are more meaningful. 

Poiphyrins not only chelate a wide variety of metals but also stabilize a large range 

of oxidation states. Formal oxidation states of 0 to +6 are known for metallopoiphyrins 

derived from the iron triad. This property has been recently utilized in multi-electron 

transfer studies since the ligand coordination sphere is essentially conserved for all of the 

oxidation states of a particular metal. 

Porphyrins are excellent spectroscopic tags in both the UV/vis and 'H NMR 

spectroscopies. The UV/vis spectrum typically exhibits an intense absorption, known as the 

Soret band, which appears between 350 nm and 500 run and has a molar absorptivity as high 

as 10® M 'cm '. Several less intense peaks called Q-bands can be observed from 450 run to 

700 nm with molar absoiptivities of 10^-10* M 'cm '. Proton NMR spectroscopy for meso-

tetra-p-tolylpoiphyrin complexes can reveal molecular symmetry. When the four-fold 

symmetry of the porphyrin is maintained on the NMR time scale, the 'H NMR resonances 

for the p-pyrrole and tolyl methyl protons are singlets. When the metallopoiphyrin complex 

has mirror symmetry in the horizontal (porphyrin) plane, such as in (TTP)0s(Py)2, the o- and 

/M-tolyl protons appear as two doublets. In complexes which lack horizontal mirror 

symmetry, the o- and o'-tolyl protons as well as the m- and m'-tolyl protons are magnetically 
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inequivalent. For example, in (TTP)Os(CO)(Py) the 0-, m- and m'-protons appear as 

four distinct resonances. However, fast rotation of the tolyl groups about the meso-caibon 

bond on the NMR time scale can result in the appearance of higher symmetry. This is the 

case for (TTP)Ti=0, which exhibits only two doublets for the aryl protons in Ûie NMR 

spectrum. 

The presence of axial ligands is often readily established proton NMR. 

Substituents bound to the metal typically have an upfield shift relative to the corresponding 

resonances of the unbound ligand. This upfield shift is due to the ring current of the 

porphyrin jc-system. 

Porphyrin silylene and carbene complexes 

The useful attributes of the porphyrin macrocycles described above appeared to be 

ideal for stabilizing silylene and carbene complexes. Molecules containing silicon multiple 

bonds commonly are unstable with respect to dimerization to form silicon single bonds. For 

example, Me^SisCH; can only be observed in the gas phase' and attempts to isolate this 

silaethene resulted in the formation of 1,3-disilacyclobutane. Generally, to avoid this 

problem, bulky substituents are placed on the silicon atom to kinetically stabilize the multiple 

bond. The use of poiphyrins to sterically stabilize transition metal silylene complexes might 

allow the isolation of complexes with small substituents on silicon. The woric presented here 

describes the successful use of this aR)roach to prepare osmium porphyrin silylene 

complexes. Also described are osmium porphyrin carbene complexes and their ability to 

catalyze the formation of alkenes and cyclopropanes. 



www.manaraa.com

CHAPTER 2: LOW COORDINATE SILICON 

Introduction 

Molecules containing silicon multiple bonds have long been proposed as transient 

species.® In spite of this, their chemistry remained undeveloped until 1966 when Nametkin 

and Gusel'nikov observed transient 1,1 -dimethylsUaethene spectroscopically/ This 

observation marks the beginning of the intensive study of double and triple bonds involving 

silicon. Since 1966 many species such as silabenzenes,® silaethenes (or silenes, Si=C),' 

silaketimines (or silaimines Si=N),'° silaphosphines (Si=P),'* silaketones (Si=0)," and 

disilenes (Si=Si)" have been observed indirectly through chemical trapping experiments and 

isolation in argon matrices at 10 K. Other, more exotic species, have been proposed and 

observed in the gas phase, including SiCH, SiQ and the radical cation CHNSi 

In the last ten years the organometallic chemistry of silicon has grown tremendously. 

The isolation of the first disilenes in 1981 and 1982 by West and Masamune stimulated this 

interest." Since these initial efforts, molecules have been prepared which contain silicon 

double bonds to a variety of elements (Si=E where E = Si, C, N, P or transition metals). 

Initially, many of these molecules were isolated as adducts in which a base stabilizes the low 

coordinate silicon. Recent synthetic advances have lead to the preparation of base-free 

examples. With the exception of the transition metal silylene complexes, X-ray structures 

have now been reported for the base-free molecules containing the Si=E fragment. 

Low valent silicon species have been postulated as reactive intermediates in a variety 

of reactions. For example, transition metal silylene complexes have been invoked as 

intermediates in metal catalyzed polymerization and oligomerization reactions of silanes. 
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Unlike some low valent silicon species, particularly disilenes, the chemistry of silylene 

complexes has been relatively unexplored. The lack of understanding of the chemistry of 

transition metal silylene complexes is primarily due to the inability of the synthetic chemist 

to isolate these molecules until very recently. When our work began in 1988, only four 

examples of terminal transition metal silicon double bonds had been prepared and structurally 

characterized. All of them contained a base donor stabilizing the silicon." Since that time, 

a number of reports have appeared which detail the synthesis and isolation of silylene 

complexes. Reports of other metal stabilized low valent silicon molecules, M(TI^-Si=E) (E is 

Si, C, or N) have also appeared. Since these are pertinent to tfiis dissertation, they will be 

reviewed along with the metal silylene complexes. 

Base-Stabilized Transition Metal Silylene Complexes 

Theoretical Studies 

Several calculations have been done at various levels on model silylene complexes. 

A general obstacle in theoretical studies involves the complexity of real molecules, such as 

(C0)5Ci^Si(0'Bu)2*HMPA, which greatly extends computation times. Consequently, models 

for silylene complexes have been simplified by replacing the alkyl substituents on silicon 

with hydrogen and/or hydroxy groups. In general, calculations indicate that metal silylene 

complexes are analogous to Fischer-type caitene complexes; the group 14 atom is electron 

deficient. An ab initio SCF calculation on (C0)3Cp=Si(0H)H'̂  indicates that the LUMO is 

located primarily on silicon and is jc-antibonding between chromium and silicon. Therefore, 

coordination of a donor molecule to silicon not only stabilizes the electron deficient silicon 

but simultaneously weakens the metal silicon bond. Calculations on (CO);Mo=SiH2 predict 
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that the silicon should be pyramidal.'® This effect arises firam the lowering of the Si p 

atomic function contribution to the SiHj lone pair. The calculated angles agree weU with X-

ray structural data on base-stabilized silylene complexes and suggest that the base-free 

analogs will also be pyramidalized at silicon, much like silicon in disilenes. The Mo=Si 

bond strength (47.22kcaI/mol) is calculated to be only 2/3 that of Mo=C (76.53 kcal/mol). 

Synthesis 

Transition metal silylene complexes have been prepared by a) proton migration, b) 

photochemical activation of silyl complexes, c) oxidative addition of silanes to coordinatively 

unsaturated metals d) electrophilic abstraction from silyl complexes and e) salt eliminations 

between metal dianions and dichlorosilanes. The latter two methods are thus far the most 

significant with (e) providing a wide variety of silylene complexes and (d) providing die first 

base-free silylene complex observed by proton NMR. 

The first observed base-stabilized iron silylene complex, (Et2NH)Me2Si=Fe(CO)4, was 

prepared by a 1-3 proton shift from (diethylaminoXdimethylsilyl)tetracarbonyliron hydride." 

This silylene complex was stable below -20 'C for long periods. A chloroaminosilylene 

complex, (2-chloro-l,3-diphenyl-l,3-diaza-2-silacyclopentane)Si=Fe(CO)4 was prepared from 

a similar reaction. 

Photochemical generation of transient metal silylene complexes has been 

demonstrated by trying reactions. Pannell'® and Couldwell'® have shown similarly that 

iron silylene complexes could be generated upon tiie photolysis of Cp(CO)2FeSiMe2SiMe3. 

Using a similar method, Ogino has isolated base-stabilized bis-silylene complexes, (T|'-

C5Me5)(CO)Fe(SiMeOMe)(SiMe2)(^-OMe) eq. 2.1,^ and (CO)4Mn(SiMe2)2(n-OMe)." 

Ogino has also isolated a mixed silylene gerraylene species.^ 
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Me OMe 

Cp / 
Cp(CO)FeSiMe2SiMe(OMe)2 

hv 

Si 

OMe (2.1) 

CO 
\ 

Me Me 

Indirect evidence supports the formation of metal silylene complexes from the 

oxidative addition of dihydrosilanes to coordinatively unsaturated metal centers. Wilkinson's 

catalyst effectively catalyzes the polymerization of dihydrosilanes, H^SiR;. When EtjSiH is 

present in dihydrosilane polymerization reactions catalyzed by Wilkinson's catalyst, the 

silylene insertion product EtjSiSiRjH is observed. Formation of this product may involve 

silylene complexes.^^ Silylenes were also trapped by substituted acetylenes to form 1,4-

disila-2,5-cyclohexadienes and 1-silacyclopentadienes when dihydrosilanes were heated in the 

presence of trans-[PtCl2(PEt3)2] and NiCIzCPEt^); respectively.^ Other platinum reagents 

also polymerize dihydrosilanes, presumably via metal silylene complexes. Platinum 

disilenes and silylene dimers, (PtSi);, have been isolated from similar reactions." Early 

transition metal complexes also catalyze polymerization and oligomerization of 

dihydrosilanes. The mechanisms for transition metal catalyzed silane polymerizations are 

still being debated with evidence both for^® and against^^ silylene complex intermediates. 

Differences in the systems may lower the energy of one mechanism over another. It appears 

that late transition metals are more apt to form silylene complexes than are the early 

transition metals. 

Only two silylene complexes have been isolated from reactions involving oxidative 
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addition of dihydrosilanes to metal complexes. Corriu and co-workers have prepared and 

characterized (CO)4Fe=Si(Ph)(l-N,N-dimethylaminonaphthyl) and (ti'-

C5Me4H)(CO)2Mn=Si(Ph)(l-N,N-dimethylaminonaphthyl),^® The silicon NMR of the iron 

complex has a resonance at 101.1 ppm, while the silicon resonance for the manganese 

complex is at 124.0 ppm. 

Electrophilic abstraction of a silicon substituent to produce transition metal silylene 

complexes has been reported by boûi Gladysz and Tilley. Gladysz treated (Ti^-C;H;)Re(NO)-

(PPhaXSiMe^a) with MegSiOTf to produce (n^-C^5)Re(N0)(PPh3)(SiMe20Tf). '̂ The 

triflate ion can be subsequently displaced by pyridine. NMR studies of the reaction between 

the chlorosilyl complex and AICI3 suggest that a base-free cationic silylene may be present in 

solution. Tilley has also prepared several mthenium silylenes by a similar reaction.^ The 

first base-free silylene complexes, [(T|^-C5Me5)(PMe3)2Ru(SiSR2)][BPh4] (R = Et, p-tolyl), 

observed by 'H NMR were prepared by this method. '̂ 

The most general synthetic route to silylene complexes is the salt elimination reaction 

utilized by Zybill and MuUer.^^*'̂ '̂ ^ Carbonylate anions, NagMCCO)^ (M=Fe, n=4; M=Cr, 

Mo, or W, n=5) have been effectively used to prepare silylene complexes when treated with 

dichlorosilanes, ClgSiRg, eq. 2.2. These reactions were conducted in a donor solvent such as 

THF or HMPA and resulted in donor stabilized silylene complexes. Silylene complexes 

containing silicon substituents such as alkyls, halides, alkoxides, and alkylsulfldes have 

successfiilly been isolated from this type of reaction. 

A unique reaction that deserves mention but does not fit in any of (he above 

categories was reported by Jutzi.^^ In benzene, decamethylsUicocene, (T;^-C^e;)2Si, was 

treated with carbonylgold(I) chloride, (CO)AuCl, to produce 
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Table 2.1. Known transition metal silylene complexes 

Silylene Complex 
8ppm 

^(MjSi) 
A 

d(Do|i) 
A 

Réf. 1 

(CO)4FeSi(HMPA)CBuO)2 7.1 2.289(2) 1.730(3) 32c 
(CO)4FeSi(HMPA)CBuS)2 74.7 2.278(1) 1.734(2) 32c 
(CO)4FeSi(HMPA)(Me)2 92.3 2.280(1) 

2.294(1) 
1.735(3) 
1.731(3) 

32c 

(CO)4FeSi(HMPA)Cl2 59.7 2.214(1) 
2.221(1) 

1.683(3) 
1.676(3) 

32c 

(CO)5CiSi(HMPA)0BuO)2 12.7 2.432(1) 1.736(3) 32c 
(C0);CiSi(HMPA)CBuS)2 83.2 32c 1 
(CO)5CrSi(HMPA)(Me>2 101.4 2.410(1) 1.743(2) 32c 
(CO)5CiSi(HMPA)Cl2 55.0 2.342(1) 1.690(2) 32c 
(CO)5CrSi(HMPA)(l-AdaO)2 11.9 32c 
(CO)5CiSi(HMPA)(2-AdaO)2 11.7 32c 

(CO)jCrSi(HMPA)(NpO)2 12.5 32c 
(CO)5CrSi(HMPA)(tritylO)2 10.9 32c 
(Tl'-C5Me5)(PMe3)(NO)Re(SiMe2F) 29 
(Tl'-C5Me5)(PMe3)(NO)Re(SiMe2a) 48.09 29 
(Tl'-C5Me5)(PMe3)(NO)Re(SiMe2Br) 29 
(n'-C;Me;)(PMe3)(N0)Re(SiMe2l) 29 
(Ti'-CsMe5)(PMe3)(N0)Re(SiMe20Tf) 29 
[(n'-C;Me;)(PMe3)(N0)Re{SiMe2(Py)}][0Tq 29 

(T|"-C5Me;)(PMe3)2RuSiPh2a 74.07 30a 
(Ti='-CsMes)(PMe3)Ru(SiPh2a)2H 57.81 30a 
(n'-C5Me5)(PMe3)2RuSiPh20Tf 112.39 2.349(2) 1.853(5) 30a 
[(Ti'-C:5Me5)(PMe3)2RuSiPh2NCMe][BPh4] 95.75 2.328(2) 1.932(8) 30a,b 
(Ti"-C5Mes)(PMe3)2RuSi(SEt)20Tf 86.05 31 
(Tl='-C5Me5)(PMe3)2RuSi(S-p-tolyl)20Tf 77.14 31 

(Ti'-C5Me5)(PMe3)2RuSi(S.p-tolyl)(OTl)2 37.10 31 

[(îl'-Ç5Mej)(PMe3)2RuSi(S-p-
tolyl2)NCMe][BPh4] 

58.30 31 

[(G-C^e^(7t-C;Me^Si]Aua 82.8 33 
(CO)4FeSi(HNEl2)(Me)2 17 
(CO)4FeSi(a)(NPhCH2CH2NPhH) 17 

(Ti'-CsMesXCOFeCSiMeOMeXSiMCjXn-
OMe) 
cisArans isomers 

127.4 
121.1 
101.9 
93.9 

2.222(3) 
2.207(3) 

1.793(9) 
1.799(8) 

20 

Cp'COFe(GeMe2)(SiMe2)n-OMe 22 
Cp*C0Fe(GeMe2)(SiMe2)^i-0'Bu 22 
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Table 2.1 cont 

1 Silylene Complex 
ôppm 

^(M|6i) 
A A 

Ref. 1 

1 (CO)4Mn(SiMe2)2(ji-OMe) 115.4 2.336(2) 
2.344(2) 

1.784(5) 
1.795(4) 

21 

(CO)4FeSi(Ph)(aminonaphthyl) 101.1 28 
(Tl'-CjMeH4)(CO)2MnSi(Ph)(aniinonaphthyl) 124.0 28 1 
(CO);CrSi(dimethylaminometbylphenyl)2 124.9 2.408(1) 2.046(2) 32a 
[(Ti>-C5Me5)(PMe3)2RuSiPh2][OTf] 30a 
[(Tl'-C5Me5)(PMe3)2RuSi(S-p-tolyl2)][BPh<] 259.4 31 
[(n'-C5Me;)(PMe3)2RuSi(SE(2)][BPbJ 264.4 31 
(n'-C;Me;)(C0)2ReSiCBu)2 32c 

1 (CO)4FeSiOBuS)2 83.2 32b 

Na^MCCO). + CljSiR^ -> (C0)„M=SiR2-B (2.2) 

M=Fe, n=4; M=Cr, Mo, or W, n=5 

B = THF or HMPA 

[bis-(pentamethylcyclopentadienyl)silanediyl] gold chloride. 'H NMR indicates that the two 

cyclopentadienyl rings are inequivalent and supports the formula [(o-CjMesXiî-

C;Me;)Si]AuCl. The '̂Si NMR at 82.8 ppm suggests that this complex contains a low valent 

silicon atom. However, the unusual JC-coondinated Si does not cleariy represent a base-free 

silylene complex. 

Characterization Methods 

Metal silylene complexes have been characterized by NMR, IR, Mossbauer, and 

single crystal X-ray diffraction studies. The most important techniques are '̂Si NMR and X-

ray diffraction. '̂Si chemical shifts are diagnostic for unsaturated silicon. Typical 
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resonances for four-coordinate silicon occur between +20 and -200 ppm as referenced against 

tetramethylsilane, while resonances of low valent silicon have a diagnostic downfield shift 

(MeSjSisSiMesj, 63.6 ppm; (Mes'BuSi)2, 90.3 ppm; HSlMej, -16.34 ppn; SiCl^, -18.5 ppm; 

SiH^, -91.9 ppm; Ph^SiMe;, -8.19 ppm; MegSiOEt, 15.1 ppm; see also Table 2.1). The 

presence of halogens or metal coordination widens the range in both directions (FSiMej, +33 

ppm; t,Si, -346 ppm; Me3SiCo(CO)4,44.42 ppm). Therefore when metal coordination is 

involved, a comparison of '̂Si signals between metal silylene complexes and the 

corresponding metal silyl complexes gives a better indication of low valency, [(TJ'-

C5Me5)(PMe3)2RuSi(SEt2)][BPh4], 264.4 ppm and (Ti'-C5Mej)(PMe3)2RuSi(SEt)20Tf, 86.05 

ppm.^^ 

X-ray diffraction studies are invaluable in determining low coordination and multiple 

bonding of silicon. A short metal silicon bond is expected in true silylene complexes. The 

base-stabilized silylene complexes that have been isolated exhibit M=Si distances that are 

0.01 - 0.2 Â shorter than their respective M-Si single bonds. Further evidence for partial 

multiple bond character is indicated by long silicon to donor base oxygen or nitrogen 

distances. Table 2.1. Typical four coordinate Si-0 and Si-N distances arc 1,63-1.66 and 

1.7-1.8 Â,^° respectively. Difiraction studies of carbonyl silylene complexes 

[(CO)5Cr=SiR2*HMPA] show an umbrella effect, in which the equatorial cariwnyls are bent 

towards the silylene group rather than away from it as expected on steric grounds.^^ This 

umbrella distortion was reproduced by an ab initio calculation and is explained by an 

electronic interaction between the electrophilic silicon and the carbonyls.'® 

IR data indicate that the silylene ligand is comparable to the carbene ligand in 

electron donating ability to metal centers '̂- '̂̂ ^ (Table 2.2). Zybill^^" notes a slightly 
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stronger donor influence of the silylene ligand in iron complexes [(C0)4Fe=Si(0'Bu)2»HMPA: 

2005, 1920, 1883 cm"'] versus chromium complexes [(C0)sCr=Si(0'Bu)2*HMPA: 2015, 

1991, 1930 cm"']. Mossbauer data^^®-^® also indicate a significant donor ability of the 

silylene ligand. For example, isomeric shifts for two silylene complexes, 

(CO)4Fe=Si=Fe(CO)4 (HMPA)2 (IS= -0.488 mm/s) and (C0)4Fe=Si(0'Bu)2*HMPA (IS= 

-0.477 mm/s) indicate that higher electron density is located at the metal center as compared 

to Fe(C0)5, '̂ Table 2.3. 

Table 2,2. IR data 

1 Compound V(co) cm"' Reference 
[Cl2SiFe(CO)4]2 2094, 2053, 2048, 2038 35 
(a3Si)2Fe(CO)4 2125, 2078, 2071, 2061 35 
Fe(CO)4CHNMe2 2049, 1977, 1949, 1937 36 
Cr(C0)jCHNMe2 2057, 1970,1941, 1933 36 
Cr(CO)5CHN(C5Hia) 2055, 1969, 1935, 1931 36 
Fe(CO)4[CN(Me)CH2CH2N(Me)] 2040, 1959, 1938 37 
Fe(CO)3[CN(Me)CH2CH2N(Me)]2 1959, 1841 37 
[(C0)4Fe=Si(0'Bu)2«HMPA 2005, 1920, 1883 32c 
[(C0)jCP=Si(0'Bu)2«HMPA 2015, 1991, 1930 32c 

Table 2.3. "Fe Mossbauer data 

Compound Isomeric Shift 
(mm/s) 

Quadrople Splitting 
(mm/s) 

Reference 

cw-Fe(CO)4Cl2 0.29 0.24 39 
cw-Fe(C0)4Bi2 0.31 0.30 39 
cw-Fe(C0)4^ 0.31 0.30 39 
[(CO)4Fe=SiHMPA2 
Fe(C0)4 

-0.49 1.62 32c,38 

[(C0)4Fe=Si(0'Bu)2' 
HMPA 

-0.48 1.46 32c,38 

Na2Fe(CO)4 -0.33 38 
Fe(CO); -0.18 38 
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Reactivity 

Preparation of Base-Free Silylene Complexes. 

Several woikers have examined the possibility of preparing base-ftee transition metal 

silylene complexes from base-stabilized silylene complexes. Zybill has observed the loss of 

THF from base-stabilized complexes, (C0)nM=SiR2*THF (M=Fe, n=4; M=Cr, n=5), to 

produce silylene dimers at -40 *C even in THF solvent.^® In the presence of reagents such 

as dimethylcarbonate, the base-free silylene complexes react via a formal [2+2] cycloadditioh 

and subsequent cycloreversion to produce (dimethoxycarbene)chromium caibonyl and cyclic 

trisiloxanes. TUley has also observed base-free silylene complexes by NMR techniques.^ 

Dissociation of silicon-bound acetonitrile from [(T|^-C;Me;)(PMe3)2Ru=SiPh2' NCMejfBPh^] 

produces the transient species [(Tl^-C;Me;)(PMe3)2Ru=SiHi2] [BPh,] in dichloromethane. 

Treating (Ti^-C5Me5)(PMe3)CNO)Re(SiMe2Q) with AIQ3 results in the formation of the 

adduct (Ti^-C5Me;)(PMe3)(N0)Re(=SiMe2-AlCl4) and the base-free cationic silylene complex 

[(Tl'-C5Me5)(PMe3)(NO)Re(=SiMe2)]V 

Trapping Reactions. 

Transition metal silylene complexes have been shown to thermally and photolytically 

transfer silylene groups.^^*^ Photolysis of (CO)4Fe=Si(R)2-HMPA, where R is 'BuO, "BuS, or 

Me, in the presence of 2,3-dimethylbutadiene produces the silacyclopentenes and (2,3-

dimethylbntadiene)iron tricarbonyl. Interestingly, photolysis of (CO)4Fe=Si(R)2-HMPA in the 

presence of triphenylphosphine first generates the isolable trans-phosphinesilyleneiron 
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tricarbonyl complexes. Further photolysis produces the rra/w-bisphosphine complexes. In 

the absence of a trapping reagent thennolysis or photolysis produces low molecular weight 

silicon polymers and iron caitonyl clusters. Mildly heating the dimethyl derivative for a 

short period results in the dissociation of HMPA and the formation of a dimer with two 

bridging silylene units. 

The reactivity of [(Ti'-C5Mej)(PMe3)2RuSiPh2NCMe][BPh4] with a variety of 

nucleophiles has been reported by Tilley.^"^ [(il''-C;Me3)(PMe3)2RuSiPh2NCMe] [BPhJ 

reacts with LiAlH^ to produce the silyl complex [(Ti^-C5Me5)(PMe3)2RuSiPh2H. In 

acetonitrile solutions, alcohols (ROH; R= Me, Et, ^Bu) and water cleave the base-stabilized 

silylene ligand to produce the acetonitrile complex (T|^-C;Me;)(PMe3)2RuNCMe and 

HSiPhgOR or Ph2Si(H)-0-(H)SiPl^, respectively. Enolizable ketones also undergo a similar 

cleavage reaction to produce H2C=C(R)-0-Si(H)Ph2. When 

C5Mej)(PMe3)2RuSiPh2NCMe][BPh,] is treated with acetic acid, the silicon containing 

product is HSiPh2(02CMe). 

Ti^-Si=E Metal Complexes 

Only a few species with T|^-cooidinated silaethenes, silaketimmes, and disilenes are 

known. There are two general synthetic approaches for preparing these complexes. These 

involve intramolecular oxidative addition of a silicon-hydrogen bond to a metal center or 

reductive coupling of a metal chloride and a chlorosilane. 



www.manaraa.com

15 

TI^-Silaketi mines 

The only reported Tj^-R^SisNR' metal complex was prepared by Berry using the 

reactions outlined in Scheme 2.1/' The key step is the elimination of tetramethylsilane to 

produce the silicon-zirconium bonded complex, CpjZrCPMesXri^-N'BuSiMez). The zirconium 

silicon bond distance, 2.645(1) Â, is 0.1 Â shorter than a zirconium silicon single bond, 

while the silicon nitrogen distance, 1.687(3) Â, is comparable to a silicon nitrogen single 

bond (dsi.N = 1.64-1.80 Â,'*^ dsi.N= 1.568(3) A'̂ ^). Berry also described the reactivity of 

Cp2Zr(PMe3)(Ti^-N'BuSiMe2). Hz adds across the Zr-Si bond to give 

CpjZr(H)(PMe3)(N'BuSiMe2H). Ethylene inserts into the Zr-Si bond to produce an 

azasilametallocyclopentane. Similarly, reaction with formaldehyde produces the insertion 

product, Cp2Zr(N'BuSiMe2CH20). Surprisingly, for a d° metal center, carbon monoxide 

displaces the phosphine in Cp2Zr(PMe3)(Ti^-N'BuSiMe2). 

Scheme 2.1 

Cp2Zr(I)(N*BuSiMe2H) + LiCH^SiMea Cp2Zr(CH2SiMe3)(N'BuSiMe2H) 

Cp2Zr(CH2SiMe3)(N'BuSiMe2H) Cp2Zr(f-IfBuSiMe2) + Me^Si 

Cp2Zr(Ti^-N*BuSiMe2) + PMcj -> Cp2Zr(PMe3)(n^-N^uSiMe2) 

T)^-Silaethenes 

Althou^ metal stabilized silaelhenes were postulated as reactive intermediates for 

several years, a tungsten complex was the first to be observed spectioscopically.^ This was 

accomplished in 1983 and required low temperature. Photoejection of CO from 

CpW(CO)3(CH2SiMe2H) followed by intramolecular oxidative addition of Si-H to the 
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tungsten center generated the silaethene complex CpW(H)(CO)2('n^-Œ2SiMe2). In 1987, a 

similar reaction involving CpFe(CO)2(Tl^-CH2SiMe2H) to produce Q)Fe(H)(CO)(T|^-

CHgSiMeg) was reported/' Neither of these complexes could be isolated. The following 

year Tilley expanded the procedure to ruthenium. Addition of the Grignard reagent 

ClMgCHjSiR'aH to the 16-electron complex Cp'(R3P)Rua (R = cyclohexyl, i-Pr, R' = Me, 

Ph) at -78 'C produced Cp'(R3P)Ru(H)(n'-CH2SiR'2).'̂  When R= i-Pr and R'= Ph, the 

complex was sufficiently stable to obtain a crystal structure which contained two independent 

molecules in the assymmetric unit The Si-C bond lengths, 1.78(2) and 1.79(2) Â, fall 

between a single bond (1.87-1.91 and a double bond (1.702(5) 1.764 A"**). The 

"C (-29.04 ppm) and '̂Si (6.14 ppm) NMR resonances are at lower field than expected for a 

free silaethene but are in the range typical for metal coordinated silaethenes (Table 2.4). 

Similarly, an iridium silaethene complex, Cp*PMe3lr(T|^-CH2SiPh2), was prepared by treating 

Cp*PMe3lr(Me)(Q) with ClMgCHjSiPhaH. This reaction involves the elimination of 

methane.^" A high field signal at -33.37 is assigned to (he CH; fragment of 

Cp*PMe3lr(Ti^-CH2SiPh2). A single crystal X-ray diffraction study on Cp*PMe3lr(Ti^-

CHgSiPiy indicates that the C=Si distance is 1.810(6) A. Reactivity studies indicate that the 

iridium complex is remaikably stable. For example, no reaction occurs with excess 

phosphine at 140 *C after several days. Similarly, neither photolysis nor the addition of 

hydrogen gas produces any reaction. Methyliodide adds across the metal silicon bond as 

does methanol resulting in Cp'PMe3lr(I)(CH2SiPh2Me) and Cp*PMe3lr(H)(CH2SiP1^0Me), 

respectively. 

Berry and coworkers have prepared a tungsten silaethene complex via an 

intramolecular reductive coupling reaction. '̂ Treating Cp2W(a)(CH2SiMe2a) with 
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magnesium results in the formation of MgCI^ and Cp^WCri^-CH^SiMez). As is typical of this 

type of complex, the "C and '̂Si resonances occur at high field ("C, -41.09 ppm; '̂Si, -15,7 

ppm). An X-ray diffraction study indicates that the Si=C bond length is 1.800(8) Â, 

Addition of ligands (L) such as phosphine or ethylene results in migration of the silicon to a 

Cp ring to generate Cp(T|'*:T|'-C;H;SiMe2CH2)W(L). The migration is reversible; on the 

removal of the coordinating ligand (L) the structure is reformed. Methanol adds across 

the W-Si bond to produce Cp2W(H)(CH2SiMe20Me) while hydrogen or tiimethylsilane add 

across the W-C bond to produce CpjWCHXSiMea) or Cp2W(SiMe3)2, respectively. 

Ti^-Oisilenes 

Mononuclear and dinuclear disilene complexes have been prepared. In the dinuclear 

complexes the disilene ligand bridges the two metal centers in an fashion. The first 

observed mononuclear coordinated disilene complex was Hg(OCOCF3)2(Ti^-Mes2Si=SiMes2). 

This compound was generated at low temperature from Hg(OCOCF3)2 and SiR^SiRg. Upon 

wanning, CFgOCOSiRgSiRzOCOCF) is formed.'̂  Molybdenum and tungsten disUenes have 

been prepared by intramolecular reductive coupling of Cp2M(a)(Ti^-SiMe2SiMe2a) with 

magnesium to produce CpjMCTi^-SiMeaSiMej)." In these complexes, the '̂Si NMR 

resonances are at high field (-20.3 ppm, M = Mo; -48.1 ppm, M = W, 'Jw.si= 50.7 Hz). The 

Si-Si distance in the tungsten compound is 2.260(3) Â as indicated from an X-ray crystal 

structure. Hiis is between Si-Si single (2.35 Â) and double (2.14 Â) bonds. Platinum 

disilene complexes have been prepared by the lithium reduction of platinum 

bisphosphinedichlorides in the presence of tetra-substituted disilanes. The disilene is 

presumably formed by an oxidative addition-reductive elimination process, Figure 2.1.^ 

Alternatively the disilene platinum complexes may be prepared by displacement of ethylene 
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Figure 2.1. Proposed mechanism for the formation of platinum disUenes 

from a platinum bisphosphine ethylene complex or by photolytic ejection of oxalate from 

(Et3P)2Pt(Ox) in the presence of Mes2Si=SiMes2." 

Bimetallic bridging disilenes are prepared by the addition of primary (HjSiR) silanes 

to platinum(0) bisphosphine complexes.^ Frequently the Pt(0) complex is generated in situ 

from bisphosphineplatinumdichlorides and an alkali metal." Tessier-Youngs and Youngs 

have also prepared a bridging disilene by the addition of lithiumdiphenylsilane to 

bis(triethylphosphine)platinumdichloride.'̂  Tilley has reported the synthesis of a novel 

ri Sri'-disilene diplatinum species which also contains two bridging silylene fragments,^ 

Figure 2.2. 
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Table 2.4. Ti^-Si=E metal complexes 

Compound ^Si 5 E 
("Si,"C) 

5 

^(SIJE) 
À A 

D{M-E) 

A 
Ref. 

Cp2Zr(PMe3)(f-N'BuSiMe2) 1.687(3) 2.654(1) 2.167(3) 41 

Cp2Zr(C0)(f-N'BuSiMe2) -69.9 41 Î i
 

s 45 
Cp'(Cy)3PRu(H)(n'-CH2SiMe2) 46 
Cp'(Cy)3PRu(H)(Ti'-CH2SiPh2) -29.68 46 
Cp*(i-Pr)3PRu(H)(Ti='-CH2SiPh2) 6.14 -29.04 1.78(2) 

1.79(2) 
2.382(4) 
2.365(5) 

2.25(2) 
2.26(1) 

46 

Cp'PMejIrCîi^-CffSiPtf) -33.37 1.810(6) 2.317(2) 2.189(8) 50 

CplPMealKîi^-CH^SiMe^) 50 

Cp*PMe3Rh(Ti^-CH^SiPtf) 50 

CpzWCîi'-CHîSiMea) -15.7 -41.09 1.800(8) 2.534(2) 2.329(7) 51 

Cp(C0)2W()l'-CH2SiMe2) * 44 

HgCOCOCFaMf-SiRgSiRz) 52 

CpzWCn'-SiMezSiMez) -48.1 -48.1 2.260(3) 2.606(2) 2.606(2) 53 

CpzMoCîl'̂ -SiMejSiMea) -20.3 -20.3 53 

(dppe)2Pt(Sii-Pr2Sii-Pr2) 19.60 19.60 54 

(dcpe)2Pt(Ph2SiSiPh2) -7.84 -7.84 54 

(M',n'-PhXSiSiXPh)Pt(E(gP)2 
X = H, CI 

2.575(15)-
2.602(4) 

2.355(7)-
2.383(8) 

57b 

trans-
(^i-Ti',ri'-CyXSiSiXCy)Pt(Et3P)2 
X = H, CI 

2.554(8) 2.384(4) 2.402(4) 57a 

cis-
(|X-Ti',Ti'-CyXSiSiXCy)Pt(Et3P)2 
X = H, CI 

2.648(11) 2.395(5) 2.405(6) 57a 

* -1.1, -8.0, -27.6 ppm for the three carbons of the silene ligand, no assignments have been 
made. 
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Figure 2.2. (dmpe)(H)Pt(ji-SiHPh)2[^-Ti',Ti'-PhHSiSiHPh]Pt(H)(dmpe) 
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CHAPTER 3; LOW VALENT SILICON STABILIZED BY AN OSMIUM 

PORPHYRIN 

Introduction 

To date, no coordination complex, consisting primarily of classical ligands (e.g. 

amines, cyanides, etc.) is known to stabilize silylene ligands. This is not surprising since 

classical coordination compounds have not shown any propensity to fonn stable caibene 

complexes, despite recent studies which demonstrate that strong K-bonds with TJ^-arenes and 

alkynes are possible.^^ Thus, it is clear that distinct boundaries still divide organometallic 

and classical coordination chemistry. However, metallopoiphyrin compounds serve an 

important role in unifying these two traditional areas of chemistry.® Although 

metallopoiphyrins have been of long-standing interest in classical coordination chemistry, 

they have recently been found to bind organic 7i-acid ligands.® '̂ 

As an extension of the utility of metallopoiphyrins, we describe here the synthesis 

and characterization of donor-stabilized metallopoiphyrin silylene complexes. Previous 

attempts at preparing terminal silylene complexes have utilized buUcy substituents on silicon 

to increase kinetic stability. Our îçproach was to employ large, planar porphyrin ligands as 

a means of providing steric bulk at the metal for similar reasoning. In addition, an electron 

rich, late-transition metal was chosen in hopes that further stabilization of the adjacent 

electron deficient three-coordinate silicon atom would be realized. Furthermore, 

hexamethylsilacyclopropane serves as a useful reagent for producing transient 

dimethylsilylene under mild conditions.^ Using this rationale, we report a new method for 

the preparation of silylene complexes which involves silylene transfer as well as a method 
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which uses dichlorosilanes as the sUylene source. 

Experimental Section 

General 

All manipulations of reagents and products were earned out under a nitrogen atmo

sphere using a VACUUM/ATMOSPHERES glove box equipped with a model M040H Dri-

Train gas purification system or on a vacuum line using standard Sctdenk techniques. All 

solvents were dried and distUled Aom puiple solutions of sodium/benzophenone. 'H NMR 

spectra were recorded on Nicolet 300 MHz or Varian VXR 300 MHz spectrometers. 

Elemental analyses were obtained from Galbraith Laboratories, Knoxville, TN or Oneida 

Research Services, Whitesboro, NY. Dichlorodialkylsilanes were purchased from commercial 

sources, distilled from K2CO3 or CaHg, and degassed by three freeze-pump-thaw cycles prior 

to use. [OS(TTP)]2 was prepared by the literature procedure.® 

Hexamethylsilacyclopropane, HMS, was prepared from (CH3)2Si(CH(CH3)2)2,®^ and obtained 

free of THF by trap to trap distillation." 

Synthesis 

(CH3)2Si(CH(CH3)j),. 

A 1.5 M solution of LiMe in Et^O (72.0 mL, 108 mmol) was added dropwise over 

1.75 h to Cl2Si('Pr)2 (9.962 g, 53.85 mmol) while cooling at -78 °C under N2. The reaction 

mixture was allowed to warm slowly to ambient temperature and subsequently heated at 

reflux for 18 h. The solution was cooled to ambient temperature and hydrolyzed with 1 M 

HQ (~1(X) mL) until evolution of methane stopped. After the aqueous layer was washed 
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with Et^O (3 X 50 mL), the combined organic fractions were concentrated to 100 mL under 

reduced pressure, and dried over MgSO^. Distillation and collection of the 137-140 °C-

fraction produced 3.651 g (47%) of product. NMR (CDClj): 0.92 (br m, 14H, "pr), 0.14 

(s, 6H, Si-Ci/j) ppm. 

(TTP)Os=Si(CH3),OQH8 (I THF). 

Method A. [Os(TTP)]2 (15.0 mg, 8.72 |iinol) was stirred in 3 mL of THF with 

potassium (approximately 20 mg) until the brown solution became emerald green. After 

filtering the solution through a glass wool plug to remove the potassium, 2.2 |iL (18 pmol) 

of ClgSiMeg dissolved in 3 mL of THF were added dropwise to the stirred solution of 

K2[0S(TTP)] at ambient temperature to form an orange-brown solution. After stirring for 1 

h, THF and excess sUane were removed under reduced pressure. The residues were 

redissolved in QHg and filtered on a medium glass frit to remove all salts. Removal of the 

solvent from the filtrate under reduced pressure afforded 17.0 mg of brown solid (98.5% 

yield). 'H NMR (QDe): 8.25 (s, 8H, P-H), 8.07 (d, 4H, aiyl), 7.95 (d, 4H, aiyl), 7.36 (d, 

4H, aryl), 7.30 (d, 4H, aryl), 2.39 (s, 12H, tolyl-CHg), -2.10 (s. 6H, SiCHg), 1.36 (m, 4H, a-

THF), 0.55 (m, 4H, p-THF) ppm. UV/Vis (CgHg); 408 (Soret), 504 nm. Anal, calcd. for 

C^HgoN^OOsSi: C, 65.56; H, 5.09; N, 5.66. Found: C, 66.29; H, 4.79; N, 5.45. 

Method B. Approximately 3 mL of benzene containing 10.4 pL (73.2 pmol) of 

HMS and 7.0 pL (86 (ixnol) of THF were added to [Os(TTP)]2 (12.2 mg, 7.09 pmol) 

dissolved in 2 mL of diy benzene. The solution was stirred at 24 °C for 1 h before the 

solvent was removed under reduced pressure. The resulting orange-brown solid was 

dispersed in hexane (2 mL), cooled to -20 "C for 20 min., and filtered on a medium porosity 
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glass frit. The solid was washed from the frit with 5 mL of benzene containing 5 drops of 

THF. Removal of the solvent under reduced pressure produced 7.3 mg of 1*THF (52% 

yield). MS (NT-THF) found: 918.2802, calc: 918.2793. 

(TTP)0s=SiMejWC5Hs (l-py). 

To 3.8 mg (3.8 |jmol) of (TrP)0s=SiMe2*THF in 0.5 mL CgDg was added 0.6 pL 

(7.4 fimol) of pyridine (py) to produce 1-py quantitatively by 'H NMR. Removal of the 

solvent under reduced pressure produces 3.8 mg of brown solid which is found by 'H NMR 

to consist of a 65:35 ratio of l'py:0s(TTP)(py)2. 'H NMR (QDg): 8.16 (s, 8H, P-H), 7.97 

(d, 8H, aryl), 7.36 (d, 4H, aryl), 7.23 (d, 4H, aryl), 2.39 (s, 12H. tolyl-CHj), -1.84 (s, 6H, 

SiCHg), 6.50 (t, IH, py-Hp), 6.00 (t, 2H, py-H^), 5.70 (d, 2H, py-HJ ppm. UV-vis (QDg): 

414 (Soret), 498 nm. 

(TTP)0s=S:Et2OQHg (2THF). 

Using method A, 2 THF was prepared in 95% yield from Cl^SiEt; (3.0 pi, 20 fimol) 

and K20S(TTP) prepared in situ using 17.4 mg (10.1 pnol) of [OsCTTP)];. 'H NMR (CgDg): 

8.24 (s, 8H. P-H), 8.03 (dd, 8H, aryl). 7.37 (d, 4H, aryl), 7.30 (d, 4H, aryl), 2.39 

(s, 12H. tolyl-CHj), -0.48 (t, 6H, SiCHjO/j), -1.50 (m, 4H, SiO/^CHj), 1.60 (m, 4H, a-

THF), 0.65 (m, 4H, P-THF) ppm. ''Si{'H} NMR (QDg) 24.53 (s) ppm. UV-vis (Qft): 

408 (Soret), 502 nm. Anal, calcd. for QgHg^N^OOsSi: C, 66.11; H, 5.35, N, 5.51. Found: 

C, 67.01; H, 5.53; N, 4.56. 
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(TTP)0s=SiEtj-NCsH5 (2-py). 

(TTP)0s=SiEt2*THF (6.0 mg, 6.0 jimol) was dissolved in QDg and treated with 1.6 

|xL (20 pmol) of pyridine. • The 'H NMR spectrum of this sample showed quantitative 

formation of 2py. Removal of the solvent under reduced pressure yielded 4.4 mg of brown 

solid consisting of a 7:3 mixture as determined by 'H NMR of 2py;Os(TTP)(py)2. NMR 

(QDg): 8.15 (s, 8H, p-H), 8.02 (d, 4H, aiyl), 7.96 (d, 4H, aiyl), 7.37 (d, 4H, aryl), 7.23 (d, 

4H, aryl), 2.37 (s, 12H, tolyl-CH^), -0.36 (t, 6H, SiCH^C/f,), -1.25 (m, 4H, SiC/f^CH,), 6.56 

(t, IH, py-Hp), 6.05 (t, 2H, py-H^), 5.86 (d, 2H, py-H^ ppm. UV-vis (CgHg): 390 (sh), 410 

(Soret), 498 nm. 

(TTP)Os=Si(i-Pr)2 THF (3 THF). 

Using method A, 3-THF was prepared from [Os(TTP)]2 (3.9 mg, 2.3 pmol) and 

ClgSi'Pr (0.8 pi, 4.4 fimol) in 63% yield. 'H NMR (QDg) 8.25 (s. 8H, p-H), 8.08 (d, 4H, 

aryl), 8.01 (d, 4H, aryl), 7.36 (d, 4H, aiyl), 7.28 (d, 4H, aryl), 2.38 (s, 12H, tolyl-CHj), -0.43 

(d, 12H, SiCH(Œ3)2), -0.94 (m, 2H, SiCff(CH3)2), 1.38 (m, 4H, a-THF), 0.53 (m, 4H, P-

THF) ppm, UV-vis (QH«): 408 (Soret), 502 nm. 

(TTP)Os(ii^-MejSiSiMe,) (4). 

Approximately 0.75 mL of dg-benzene containing 1.4 jiL (9.9 pmol) of HMS were 

added to [OsCTTP)]; (2.0 mg, 1.16 pmol) while stirring at ambient temperature. After an 

hour the sample was concentrated to approximately 0.5 mL under reduced pressure, to 

remove tetramethylethene. 'H NMR (QD^) 8.42 (s, 8H, P-H), 8.24 (d, 4H, aryl), 7.81 

(d, 4H, aiyl), 7.30 (d, 4H, aiyl), 7.21 (d, 4H, aryl), 2.35 (s, 12H, tolyl-CHg), -1.58 (s, 12H, 
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SKCH;);) ppm. 

Using method A K2[(TTP)0s] was produced from [Os(TTP)]2 (4.0 mg, |imol). 

ClMe^SiSiMezCl (0.8 \iL, pmol) was added and the mixture was stirred at ambient 

temperature for 1.5 h. Removal of the solvent under reduced pressure produced a 1:5 

mixture of 4 and 1*THF as established by 'H NMR. 

X-ray Structure Determination of 2*2THF 

A single crystal of (TTP)Os=SiE^(THF)2*2THF suitable for X-ray stracture analysis 

was grown from a THF solution layered with octane. A brown crystal having approximate 

dimensions of 0.32 x 0.15 x 0.25 mm was attached to a glass fiber and mounted on an 

Enraf-Nonius CAD4 diffractometer with graphite monochromated Mo Kg radiation (A, = 

0.71073 Â) for data collection at -62 ± 1 °C. The cell constants for data collection were 

determined Aom a list of reflections found by an automated search routine. Pertinent data 

collection and reduction information is given in Table 3.1. Lorentz and polarization 

corrections were applied. A correction based on a decay in the standard reflections of 1.4% 

was applied to the data. An absorption correction based on a series of x^r-scans was applied. 

The agreement factor for the averaging of observed reflections was 3.5% (based on F). 

The space group P2i/c was unambiguously determined by systematic absences prior 

to the solution. The positions of the osmium and silicon atoms were determined by direct 

methods.®® The remaining non-hydrogen atom positions were determined by successive 

difference Fourier maps. Two solvent molecules of tetrahydrofuran were located in the 

asymmetric unit Only four atoms of one THF could be found by difference Fourier maps. 

The THF molecules appear to be caged by the porphyrin substituent groups. The closest 

non-bonded contact distance is 3.67 Â for a carbon of the THF group bound to the silicon 
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Table 3.1. Crystal data for (TTP)Os=SiEl^(THF)2'2THF 

Formula OsSiO2N4C60Hfi2-2(OC4H8) 

Foraïula weight 1227.67 

Space Group P2,/c 

a, Â 21.649(5) 

b, Â 13.829(3) 

c, Â 19.526(3) 

a, deg 90.0 

p, deg 98.08(2) 

Y, deg 90.0 

V.Â 5788(4) 

z 4 

dwc. g/cm  ̂ 1.416 

Crystal size, mm 0.32 X 0.15 X 0.25 

|i(MoKJ, cm"^ 22.6 

Data collection instrument Enraf-Nonius CAD4 

Radiation (monochromated in incident beam) MoK. (k = 0.71073 Â) 

Orientation reflections, number, range (29) 25, 10.0 < 8 < 22.0 

Temperature, °C -62(1) 

Scan method 8-28 

Data col. range, 20, deg 4.0-45.0 

No. data collected 13644 

No. unique data, total (with F/ > 3o(F/)) 5134 (2406) 

Number of parameters refined 283 

Trans, factors, max., mia (\jf-scans) 0.999, 0.972 

R' 0.050 

C 0.057 

Quality-of-fit indicator* 1.13 

Largest shift/esd, final cycle 0.01 

Largest peak, e/Â^ 1.3(1) 

"R = 2IIFJ - IFel/ZIF„l X, = [ZûKIFJ - © = l/(flF.I) 
'QuaUty-of-fit = [S(û(IF„l - IF,I)"/N^ -
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and a THF of solvation. 

Only the osmium and silicon atoms were refined anisotropically®' because of a lack 

of 3o data. As is common in structure determinations involving THF,®® the THF molecules 

of solvation of 2-2THF exhibit a high degree of thermal motion. Consequently, these 

solvate molecules were not refined positionally or isotropically in the final cycle of least-

squares. All hydrogens were placed in the porphyrin group at distances of 0.95 Â with 

isotropic temperature factors 1.3 times the respective carbon atoms. 

X-ray data collection and structure solution were carried out at the Iowa State 

Molecular Structure Laboratory. Refinement calculations were performed on a Digital 

Equipment Corp. MicroVAX Q computer using the CAD4-SDP programs.® 

Results 

Synthesis 

When a dark brown solution of the paramagnetic dimer [Os(TTP)]2 is treated with a 

ten-fold excess of hexamethylsilacyclopropane (HMS) containing THF, a rapid color change 

to orange is observed at ambient temperature. The 'H NMR spectrum for the material 

isolated fix)m this reaction is consistent with a new diamagnetic metalloporphyrin complex 

which can be formulated as the dimethylsilylene complex (TTP)Os=SiM^ THF, 1-THF, 

eq. 3.1. In QDg, the dimethylsilylene complex 1-THF maintains a time-averaged four-fold 

porphyrin symmetry as indicated by the single P-pyrrole signal at 8.25 ppm and the single p-

tolyl methyl peak at 2.39 ppm. The appearance of distinct resonances for the o-, o'-, m-, and 

w'-tolyl protons at 8.07, 7.95, 7.36 and 7.30 ppm indicate that mirror symmetry in the 

porphyrin plane is absent. The coordinated dimethyl silylene ligand gives rise to a new six-
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proton singlet at -2.10 ppm. The far-upfield position of this signal is characteristic of 

protons held above a poiphyrin ring cunent Resonances for a single THF molecule are also 

observed at 1.36 (m, 4H) and 0.55 (m, 4H) ppm. The upfield shift of these signals also 

indicate that THF is bound above the poiphyrin. Coordination of the THF molecule directly 

to silicon and not to osmium was established by 2D-N0ESY NMR. A cross peak between 

the THF resonance at 1.36 ppm and the SiMcz resonance at -2.10 ppm indicates that the THF 

and silylene methyl groups are indeed proximal to each other. Further support for the 

composition of the silylene complex was provided by mass spectral analysis. Electron 

impact ionization of a sample of 1-THF allowed observation of an ion fragment having an 

exact mass of 918.2802 amu. This corresponds to a daughter ion formed by loss of THF 

(calcd. mass: 918.2793 amu). 

Mc Me 
\ / 

Si 
K2(0S(TTP)J + Me X \ ., Mc • (TTP)0.s=SiMe2 THF (3.1) 

Me^ 

A more versatile method for preparing silylene complexes involves a simple 

metathetical reaction between the dianionic complex [Os(TTP)] '̂ and dichlorosilanes. 

Venburg and CoUman have independently reported a similar procedure.^" Thus, when a 

daric green THF solution of KaCOsCTTP)]'' is treated with one equivalent of 

dichlorodimethylsilane, formation of 1-THF occurs within minutes, eq. 3.2. The 'H NMR 

K2[0S(TTP)] + OgSiRz -> (TTP)0s=SiMe2-THF + 2 KQ (3.2) 
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and 2D-N0ESY spectra of 1*THF prepared from [Os(TTP)f' are identical to those of 

material prepared from the HMS method. 

As indicated by eg. 3.2, the diethyl- and di(isopropyl)silylene complexes can also be 

prepared. However the more sterically hindered silanes, CljSi'Bua and ClgSiPhg, undeigo no 

reaction with [Os(TTP)] '̂ at 22 °C. At higjier temperatures, destruction of both [Os(TTP)]^" 

and the dichlorosilanes occurs. In both 2 THF and 3 THF, a single coordinated THF 

molecule is present, as indicated by significant upfield shifts for the a- and p-pmtons in the 

'H NMR spectrum. Particularly noteworthy in the NMR spectrum of 2'THF are the ethyl 

CHj resonances. These a^ar as a diastereotopic multiplet at -1.50 ppm, indicating that the 

silicon must be pyramidalized. Irradiation of the ethyl triplet at -0.48 ppm collapses the 

methylene signal into an AB quartet The 2D-N0ESY spectrum for 3*THF demonstrates 

that THF is coordinated to silicon in this case also. The proton-decoupled silicon NMR 

spectrum of 2 THF has a single resonance at 24.53 ppm. 

Simple displacement reactions at the silylene silicon are possible. When one equiva

lent of pyridine is added to (TTP)0s=SiMe2*THF, 1 THF, in CgOg, a new complex 

(TTP)0s=SiMe2py, l-py, is produced, quantitatively as determined by 'H NMR. One 

equivalent of free THF is observed in the proton NMR spectrum at 3.57 and 1.40 ppm and 

new resonances for bound pyridine appear at 6.50 (t, IH), 6.00 (t, 2H) and 5.70 (d, 2H) ppm. 

Coordination of the pyridine to silicon was also established by a 2D-N0ESY experiment. 

The new silylene methyl resonance appears at -1.84 ppm, and the corresponding porphyrin 

signals arc observed at 8.16 (s, 8H, p-H), 7.97 (d, 8H, aryl), 7.36 (d, 4H, aryl), 7.23 (d, 4H, 

aiyl), and 2.39 (s, 12H, CH3) ppm. Removal of the solvent under reduced pressure results in 

partial decomposition of the pyridine adduct, Ipy, to Os(TTP)py2. The resulting solid 
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contains a 7:3 mixture of Ipy and Os(TTP)py2. Similaiiy, addition of pyridine to 

(TTP)Os=SiEt '̂THF produces (TTP)0s=SiEl2-py, ^-py. The methylene protons in this 

complex are also diastereotopic, indicating that pyridine is coordinated to silicon. 

When a CgDg solution of [Os(TTP)]2 is treated with a five-fold excess of HMS at 

ambient temperature in the absence of THF a rapid color change from dark brown to orange 

is observed. The 'H NMR spectrum of the new material is consistent with a diamagnetic 

osmium porphyrin coordinated by tetramethyldisilene, (TTP)Os(Ti^-Me2Si=SiMe2). On the 

NMR time scale the four fold of the poiphyrin is maintained as indicated by a single 

resonance at 8.42 ppm for the P-pynole protons and a single p-tolyl methyl resonance at 

2.35 ppm. The observance of four distinct doublets for the o-, o'-, m-, and m'-tolyl protons 

at 8.24, 7.81,7.30, and 7.21 ppm indicate the mirror plane of the porphyrin is absent. The 

coordinated tetramethyldisilene ligand produces a twelve-proton singlet at -1.58 H)m. 

Complex 4 may also be prepared by treating K2[0s(TTP)] in THF with 

ClMejSiSiMejCl. The T)^-disilene complex produced in this maimer is always contaminated 

with the silylene complex 1-THF. Over a period of several days a benzene solution of 

complex 4 containing THF completely decomposes to l-THF. 

X-ray Structure of 2-2THF 

The molecular structure of the diethylsilylene complex, 2-2THF, was determined by 

single crystal X-ray diffraction. Because of the smaU size and weak diffraction of the 

crystal, only a relatively small number of observed reflections could be collected. 

Consequently, in order to preserve a reasonable data-to-parameter ratio, the majority of atoms 

were refined with isotropic temperature factors. As a result of these limitations, small 

differences between bond lengths are probably not experimentally significant. Nonetheless, 
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the structure of 2'2THF was clearly established as a base-stabilized silylene complex as 

shown in Figure 3.1. CrystaUographic data for the structure determination and fractional 

coordinates for non-hydrogen atoms are listed in Tables 3.1 and 3.2. Table 3.3 gives 

selected bond distances and angles. 

The diethylsilylene complex 2-2THF crystallizes in the monoclinic space group 

P2i/c with four molecules per unit ceU. As expected for a six-coordinate complex, the 

poiphyrin ligand in this molecule is nearly planar. The largest deviation from planarity 

occurs at Nl, which is 0.085(15) Â out of the mean porphyrin plane. The coordination 

sphere of the osmium atom approaches an ideal octahedral geometry with bond angles 

between cw-related ligands ranging ftom 85.4° to 95.1°. The osmium atom is slightly drawn 

out of the mean poiphyrin plane 0.116(2) Â towards the silylene ligand. The Os-02 distance 

of 2.40(2) Â" suggests that the silylene ligand has a strong /raw-effect. This is supported 

by reactivity studies (yide infra). 

The Os-Si bond length in 2*2THF (2.325(8) Â) is the shortest Os-Si distance 

reported to date.'̂  This bond distance is comparable to the shortest known Ru-Si distance, 

2.328(2) Â, in the base-stabilized silylene complex reported by Tilley, 

[Cp*(PMe3)2Ru=SiRi2*NsCCH3]BPh4. '̂'''' The Si-01 distance (1.82(2) Â) is longer than 

typical Si-0 bond distances (1.63-1.66 Â) in four-coordinate silicon compounds." Of the 

nine previously reported silylene complexes containing a coordinated oxygen donor, 

Cp*(PMe3)2Ru=SiHi2(OTf) has the longest Si-0 distance (1.853(5) A), '̂ Other metal-silylene 

complexes stabilized by neutral oxygen-bases have Si-0 distances of 1.73-1.74 Â, Table 2,1. 

The coordination geometry about silicon in 2*2THF is similar to that for previously reported 

base-stabilized silylene complexes. The Os-Si-C bond angles of 121(1) and 117(1)° are near 



www.manaraa.com

33 

Figure 3.1. Molecular structure for (TTP)0s=SiE( '̂2THF with 50% probability thermal 

elipsoids and partial atom numbering scheme. The tolyl groups have been 

omitted. 
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Table 3.2. Positional parameters and their estimated standard deviations 
Atom X y z B(Â^) 

Os 0.75180(8) 0.21829(7) 0.49835(9) 2.52(1) 

N1 0.6846(7) 0.265(1) 0.5534(7) 2.2(3)* 

N2 0.7566(7) 0.349(1) 0.4553(7) 1.9(3)* 

N3 0.8241(7) 0.169(1) 0.4496(7) 2.1(3)* 

N4 0.7508(8) 0.090(1) 0.5486(8) 2.9(4)* 

CI 0.6557(7) 0.218(2) 0.6031(8) 1.7(3)* 

C2 0.6126(9) 0.280(2) 0.628(1) 3.6(4)* 

C3 0.615(1) 0.365(2) 0.598(1) 3.6(5)* 

C4 0.6600(9) 0.360(2) 0.550(1) 2.8(5)* 

C5 0.6797(9) 0.437(2) 0.513(1) 2.6(4)* 

C6 0.7240(9) 0.435(1) 0.467(1) 2.2(4)* 

C7 0.7430(9) 0.513(1) 0.429(1) 2.6(5)* 

C8 0.789(1) 0.478(2) 0.392(1) 3.0(5)* 

C9 0.7989(9) 0.377(1) 0.411(1) 2.6(4)* 

CIO 0.8410(9) 0.319(1) 0.385(1) 2.6(5)* 

Cll 0.8556(9) 0.222(2) 0.407(1) 2.7(4)* 

C12 0.8969(9) 0.160(2) 0.378(1) 2.5(4)* 

C13 0.8926(8) 0.072(1) 0.408(1) 2.0(4)* 

C14 0.8495(8) 0.077(1) 0.4535(9) 1.9(4)* 

C15 0.8324(9) -0.001(1) 0.494(1) 2.7(5)* 

C16 0.786(1) 0.007(2) 0.539(1) 3.0(5)* 

C17 0.771(1) -0.070(2) 0.582(1) 3.1(5)* 

Starred atoms were refined isotropically. 

Anisotropically refined atoms are given in the form of ttie isotropic equivalent displacement 
parameter defined as: (4/3) * [a^*B(l,l) + b^*B(2,2) + c^*B(3,3) + ab(cos Y)*B(1,2) + ac(cos 
P)*B(1,3) + bc(cos a)*B(2,3)]. 
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Atom 

cont. 
X y z B(Â^) 

CIS 0.7271(9) -0.034(1) 0.618(1) 2.4(4)* 

C19 0.7118(9) 0.062(1) 0.599(1) 2.5(4)* 

C20 0.669(1) 0.124(2) 0.621(1) 3.1(5)* 

C21 0.6513(8) 0.535(1) 0.5215(9) 1.8(4)* 

C22 0.589(1) 0.551(2) 0.497(1) 4.4(6)* 

C23 0.561(1) 0.637(2) 0.507(1) 5.1(6)* 

C24 0.598(1) 0.712(2) 0.540(1) 6.0(6)* 

C25 0.658(1) 0.704(2) 0.558(1) 4.4(5)* 

C26 0.687(1) 0.611(2) 0.555(1) 5.0(6)* 

Cil 0.567(2) 0.811(2) 0.551(2) 8.7(9)* 

C28 0.878(1) 0.366(2) 0.333(1) 3.5(5)* 

C29 0.850(1) 0.396(2) 0.270(1) 3.9(5)* 

C30 0.883(1) 0.440(2) 0.223(1) 4.1(6)* 

C31 0.946(1) 0.454(2) 0.241(1) 4.2(6)* 

C32 0.976(1) 0.423(2) 0.299(1) 3.9(5)* 

C33 0.941(1) 0.379(2) 0.348(1) 3.8(5)* 

C34 0.983(1) 0.498(2) 0.187(1) 6.4(7)* 

C35 0.8641(9) -0.095(1) 0.488(1) 2.3(4)* 

C36 0.9240(9) -0.110(1) 0.506(1) 2.0(4)* 

C37 0.9494(9) -0.200(2) 0.499(1) 3.3(5)* 

C38 0.9157(9) -0.279(2) 0.476(1) 3.1(4)* 

C39 0.856(1) -0.265(2) 0.457(1) 7.0(8)* 

C40 0.826(1) -0.172(2) 0.461(1) 3.3(5)* 

C41 0.943(1) -0.373(2) 0.466(1) 7.0(8)* 

C42 0.6260(9) 0.082(1) 0.671(1) 2.1(4)* 

C43 0.650(1) 0.056(2) 0.735(1) 3.2(5)* 

C44 0.614(1) 0.025(2) 0.786(1) 5.2(7)* 
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Table 3.2. cont. 

Atom X y z B(Â") 

C45 0.552(1) 0.013(2) 0.762(1) 3.2(5)* 

C46 0.527(1) 0.034(2) 0.696(1) 3.3(5)* 

C47 0.5641(9) 0.067(2) 0.648(1) 3.0(5)* 

C48 0.507(1) -0.019(2) 0.817(2) 6.7(8)* 

Si 0.6734(3) 0.1653(5) 0.4129(3) 3.4(2) 

C49 0.637(1) 0.045(2) 0.418(1) 5.3(6)* 

C50 0.581(1) 0.049(2) 0.464(2) 8.0(9)* 

C51 0.615(1) 0.251(2) 0.380(2) 6.9(8)* 

C52 0.564(1) 0.228(2) 0.323(1) 6.5(7)* 

01 0.6982(8) 0.140(1) 0.3295(8) 5.6(4)* 

C53 0.732(1) 0.046(2) 0.314(2) 7.4(8)* 

C54 0.740(1) 0.068(2) 0.240(2) 7.3(8)* 

C55 0.758(1) 0.171(2) 0.236(2) 7.6(9)* 

C56 0.714(1) 0.219(2) 0.284(1) 5.9(6)* 

02 0.8296(6) 0.279(1) 0.5879(6) 3.3(3)* 

C57 0.891(1) 0.239(2) 0.596(1) 5.7(7)* 

C58 0.926(2) 0.292(3) 0.653(2) 10.(1)* 

C59 0.899(1) 0.391(2) 0.650(2) 7.3(8)* 

C60 0.846(1) 0.375(2) 0.596(2) 8.5(9)* 

03 0.149 0.376 0.285 13.5* 

C61 0.146 0.313 0.344 9.2* 

C62 0.098 0.235 0.315 10.0* 

C63 0.115 0.223 0.234 13.2* 

C64 0.135 0.324 0.223 10.7* 

C65 0.610 0.798 0.279 10.0* 

C66 0.638 0.776 0.360 10.0* 
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Table 3.2. cont 

Atom X y z B(Â^) 

C67 0.690 0.758 0.323 10.0* 

C68 0.659 0.779 0.246 10.0* 

Table 3.3. Selected intramolecular bond distances and angles 

Bond distances in angstroms Bond angles in degrees 

Atom 1 Atom 2 Distance Atom lAtom 2 Atom 3 Angle 

Os N1 2.03(2) N1 Os Si 88.7(5) 

Os N2 2.01(2) N1 Os 02 89.1(6) 

Os N3 2.06(2) N2 Os Si 93.5(6) 

Os N4 2.03(2) N2 Os 02 85.3(7) 

Os Si 2.324(8) N3 Os Si 95.2(4) 

Os 02 2.40(2) N3 Os 02 87.1(5) 

Si C49 1.85(3) N4 Os Si 90.9(5) 

Si C51 1.79(4) N4 Os 02 90.3(7) 

Si 01 1.82(2) Si Os 02 177.4(5) 

Os Si C49 121.(1) 

Os Si C51 117.(1) 

Os Si 01 115.2(6) 

C49 Si C51 110.(1) 

C49 Si 01 93.(1) 

C51 Si 01 95.(1) 

Si C49 C50 111.(2) 

Si C51 C52 122.(2) 

Numbers in parentheses are estimated standard deviations in (he least significant digits. 
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the values expected for an sp' hybridized silicon. Consistent with the partial double 

bondcharacter in the Os-Si interaction is the C-Si-C bond angle of 111.0(2)*. This is more 

typical of the C-Si-C bond angles of 115-118° in disilenes, RaSisSiRj, and may reflect some 

sp^ character.'̂  Note that in other base-stabilized transition metal silylene complexes, the R-Si-

R angles range from 102° to 104°. 

Discussion 

The reaction of [Os(TrP)]2 with HMS represents a new method for the preparation of 

base-stabilized silylene complexes. The formation of 1 THF from this reaction occurs rapidly 

at 22 "C. Since the generation of the free silylene (Me^Si:) fiom HMS has a half-life of 

greater than nine days at ambient temperature, formation of l-THF is unlikely to arise from 

thermal extrusion of MczSi: from HMS. The formation of the dimethyl silylene complex 

1-THF may involve a prior electron-transfer step between [Os(TTP)]2 and HMS leading to a 

chain radical process.'* 

Unoptimized yields of 1 THF from the HMS method are typically on the order of 

50%. For a significant reaction to take place, an excess of HMS (HMSrOs > 3) is required. 

As a result, major by-products (presumably oligomeric and polymeric dimethylsilanes) arises 

fiom the decomposition of HMS. The majority of these silicon contaminants can be removed 

by washing with hexanes, but traces of impurities still remain. However, we have found that 

I'THF can be prepared independently from K2[0s(TTP)] and CHjSiMez using a method 

similar to that reported by Zybill and MOller.''-^ This reaction proceeds rapidly at 22 °C and 

produces high yields of much cleaner 1 THF In an analogous manner, the diethyl, 2 THF, 

and di(isopropyl), 3-THF, derivatives can be prepared. These compounds are all thermally 
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and air-sensitive materials and slowly decompose to uncharacterized materials over a few days 

at 23 °C. Qualitatively, the stability towards decomposition appears to decrease with the size 

of the alkyl substituent on Si. For example, we have found that 3-THF completely 

decomposes in less than 48 h. 

In all three complexes, one molecule of coordinated THF is present as demonstrated 

by 'H NMR integrations. AU isolated silylene complexes have a donor molecule coordinated 

to the silylene ligand, with one exception, [Cp*(PMe3)2Ru=Si(SR)2]BPh4 where R is p-tolyl or 

ethyl,'' This latter example can be considered to be base-stabilized by an internal donation of 

a lone pair from sulfur to silicon. In any event, all of these examples involve 18-electron 

metal complexes. The base-free complex (TTP)0s=SiR2 is formally a 16-electron complex. 

Thus, THF could coordinate to either the osmium or silicon. In fact, both sites can bind THF, 

as indicated by the X-ray crystal structure of 2 THF. However, it is apparent that under 

normal work-up conditions, one of the THF molecules is easily removed. The question of 

which site binds the donor molecule when only one THF is present was answered by 2D-

NOESY. The appearance of a cross peak between the THF signal at 1.34 ppm and the SiMe^ 

signal in 1 THF indicates that THF is coordinated to silicon. This is Anther supported by the 

diastereotopic nature of the CH^-ethyl signals of the mono-THF adduct 2-THF. Pyramidaliza-

tion of tile silicon of the diethylsilylene group is likely to be due to coordination of THF to Si. 

Further evidence for tiie coordination of a donor molecule to the silylene ligand in 

2 THF is provided by '̂Si NMR. The '̂Si chemical shift for 2 THF appears at 24.53 ppm 

in CgDg. Other base-stabilized silylene complexes exhibit '̂Si resonances in the range -9 to 

+127 ppm. Table 2.1. In contrast the base-free silylene complexes, [Cp*(PMe3)2Ru=Si(SR)2] 

[BPh^], have characteristic '̂Si signals that appear at very low field (250-264 ppm)." 
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The 16-electron valence configuration for the five-coordinate (TTP)0s=SiR2*THF 

complexes suggested that a sixth ligand could bind to osmium to produce 18-electron 

complexes, Suiprisingly, when one equivalent of pyridine was added to the dimethyl silylene 

complex 1*THF, loss of THF from the complex was observed by 'H NMR and a new species, 

1-py, appeared. The fact that free THF was observed indicates that simple substitution at 

silicon had occurred. Verification that pyridine was bound to silicon and not to osmium in 

Ipy was established by 2D-N0ESY ^H NMR. In a similar manner, when the diethyl analog, 

2-THF, was treated with one equiv. of pyridine, formation of the new base-stabilized 

complex, 2py, was observed. The diastereotopic methylene protons of the SiEtg ligand 

indicate that pyridine is bound to silicon. It is remaikable that the osmium center prefers to 

remain five-coordinate in the base-stabilized silylene complexes, (TTP)Ôs=SiR2i-. This 

suggests that the silylene ligand has a stronger trans-tSod than cartx)n monoxide in osmium 

porphyrin complexes." Despite the presence of a neutral, electron rich, d®, third row transition 

metal 7i-donor fragment, the silylene complexes prepared here still have a strong tendency to 

form base-stabilized, four-coordinate silicon. In an attempt to prevent coordination of donor 

molecules to Si, use of bulky alkyl substituents to hinder four-coordination at Si was 

examined. Unfortunately, 'BujSiCla and Ph^SiCl^ do not react with K^tOsCTTP)] in THF at 22 

°C. No appearance of the desired silylene complex is observed, and destruction of the dianion 

and the dichlorosilane occurs after several hours at higher temperatures. 

The reaction between [Os(TTP)]2 and HMS in the absence of THF rîçidly produces 

(TTP)Os(Ti^-Me2Si=SiMe2) and represents a new method for producing Ti^-disilene metal 

complexes. A possible mechanism for the formation of the ii^-disilene ligand involves 

formation of a base-free dimethyl silylene complex which is trapped by a second dimethylsilyl 
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fragment 

As in the formation of l-THF, a large excess of HMS is required for the formation of 

the disilene complex. Consequently major by-products (oligomeric and polymeric silanes) are 

present from the decomposition of HMS. Although 4 could not be obtained pure, hexane 

removed most of these by-products. Preparation of 4 by the salt elimination reaction between 

K2[0S(TTP)] and ClMe^SiSiMezCl in THF does produce (TTP)Os(Ti^-Me2Si=SiMe2). 

However, a significant amount of (TTP)0s=SiMe2-THF is also fonned in the reaction. The 

silylene complex apparently results from subsequent attack of THF on the ii^-disilene complex. 

The use of less nucleophilic solvents such as 2,5-dimethyl-THF and 2,2,5,5-tetramethyl-THF, 

were not possible since they were unable to support the in situ formation of KjOsCTTP). 

Concluding Remarks 

The preparation and structural characterization of the first base-stabilized osmium 

silylene complexes have been accomplished. Despite the use of an electron-rich metal system, 

the strong jc-donor ability of osmium in these systems is still insufficient to allow isolation of 

a true base-free silylene complex. The fact that these complexes are also the first 16-electron 

species known to contain the silylene ligand may account for this observation. These novel 

complexes also show little tendency to achieve an 18-electron valence configuration at 

osmium. Substitution of the neutral base bonded to silicon is the preferred reaction on 

treatment with additional ligands. This illustrates a strong /ra/w-effect of the silylene ligand. 

The preparation and characterization of the first osmium T|^-disilene complex was also 
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discussed. Altbougli the r|^-disilene osmium complex could be observed by NMR it was not 

able to be isolated as a pure material. The coordinated disilene ligand ^ipears to be 

susceptible to nucleophilic clevage of the silicon-silicon bond to fonn the base-stabilized 

osmium silylene complex. 
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CHAPTER 4: METAL CARBENE COMPLEXES 

Introduction 

Several general reviews'® have appeared covering metal carbene chemistry, including 

synthesis and characterization. More specific topics such as bonding models/^ caibenes on 

metal clusters," and halocarijenes" are covered in separate review articles. A review by 

Gallop and Roper on osmium carbene complexes is particular relevant to this woric.'' Only 

literature specifically related to metallopoiphyrin carbene complexes will be reviewed here. A 

brief discussion of metal centers containing multiple carbene ligands will also be present since 

they are particul^ly germane to the work described in chapter 5. 

Metalloporphyrin Carbene Complexes 

Synthesis 

In spite of the large number of metals chelated by poiphyrins and the variety of axial 

ligands involved, metalloporphyrin carbene chemistry has remained largely undeveloped. 

Carbene complexes of metalloporphyrins have only been prepared with iron, ruthenium, 

osmium and rhodium. Portions of the iron and ruthenium woric are covered in a review by 

Guilard and Kadish®" and by Mansuy.®' 

Mansuy reported the preparation of the first metallopoiphyrin complex, (TPP)Fe=CCl2 

by the reaction of (TPP)Fe(II) and CCI4 in the presence of iron powder.®^ A single crystal X-

ray diffraction study of the aqua complex, (TPP)FeCCl2(H20)«2DMF, confirmed the carbene 

structural assignment.*^ The Fe=C bond distance, 1.83(3) Â, is significantly shorter than a 

typical Fe-C single bond, 1.997 - 2.168 Under similar reducing conditions (in the 
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presence of iron powder or sodium dithionite) iron(II) porphyrins react with a variety of 

halogenated reagents to produce substituted carbene complexes, (Por)Fe=CXR (CXR can be 

CQa, CF2, CFCl, CFBr, CBr^, Ca(CN)/^ CCKCOzEt),®® €0(0=3))." COCSCJIaPh),'' 

Ca(SPh), COCSeCHzPh),®» CH(SPh), CClMe, CaCH(OH)(Me), and derivatives of 1,3-

benzodioxole. Table 4.1. Attempts to prepare (TPP)FeCl2 under the same conditions led to the 

ji-carbido porphyrin dimer, [(TPP)Fe]2C.'° [(TPP)Fe]2C is also generated when (TPP)Fe(II) 

is treated with OjCCTMS) in the presence of iron powder.'' An X-ray crystal structure of the 

H-carbido complex indicates a linear Fe=C=Fe arrangement with an Fe=C bond distance of 

1.675 The reaction of O^CCHO^-O-QH^); with (TPP)Fe(II) produces the intemediate 

carbene complex (TPP)Fe=C(Cl)C(H)(p-Cl-C6Hj2. Upon the elimination of HQ the 

vinylidene complex (TPP)Fe=C=C(p-a-C6H^)2 is produced.'̂  This complex has been 

independently prepared by Balch by treating the N,N'-dialkylated porphyrin, TPPC=C(p-Q-

QHJz (Figure 4.1), with Pka(C0),2.'* 

Formation of carbene complexes have been proposed when cytochrome P450 

reductively metabolizes derivatives of 1,3-benzodioxole, which are insecticide synergists. A 

model complex, (TPP)Fe(l,3-benzodioxol-2-ylidene) (Figure 4.2). has been prepared by 

CI 

Figure 4.1. TPPC=C(p-a-QH4)2 
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Table 4.1. Known metallopoiphyrin carbene complexes 

Complex 
Â 

UV-Vis 
(nm) 

"Cô 
ppm 

ôoH 
ppm 

Réf. 

[(TPP)Fe]2C 1.675 400, 530 91, 
90, 
92 

(TPP)FeCa(CF3) 410,528 87 

(TPP)FeCBi2 409, 525 97, 
81 

(TPP)FeCCl2 1.83(3) 409, 
525, 550 

224.7 97. 
83, 
82, 
85 

(TMP)FeCCl2 409, 525 97 

(TPP)FeCF2 81 

(TPP)FeCFa 81 

(TPP)FeCFBr 81 

(TPP)FeCa(CN) 210.0 86, 
85 

(TPP)FeCa(C02Et) 234.0 86, 
85 

(TPP)FeCa(SCH2C6H4) 266.4 88 

(TPP)FeCa(SeCH2C6HJ 411, 
521,548 

265.4 85, 
89 

(TPP)FeCa(CH3) 411, 
522, 543 

85 

(TPP)FeCa(Œ3) 411, 
521, 545 

85 

(TPP)FeCaC(H)(0H)(CH3) 312 85 

(TPP)FeC=C(p-a-C6H4)2 417, 
521, 543 

93, 
94 
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Table 4.1 conL 

Complex 
À 

UV-Vis 
(nm) 

"Cô 
ppm 

'H6aH 
ppm 

Réf. 

(TPP)FeC( 1,3-benzodloxol-
2-ylldene) 

412, 
516, 540 

95 

[(TPP)FeC( 1,3-benzodloxol-
2-ylidene)(S°Bu)]-

95 

(TPP)FeCa(SC6Hj) 411, 
520, 548 

288.5 88 

(TPP)FeCa(SR'y 408, 
520, 544 

264.3 88 

(TPP)FeCa(SR^)'' 411, 
521, 544 

88 

(TPP)FeCH(SQH5) 413, 
521, 545 

13.83 88 

(TPP)FeC(OCH3)(CH3) 412, 
515, 541 

332 85 

(TPP)FeC(0Et)(CH3) 413, 
515, 541 

330.7 85 

(TPP)FeC(SCH2C6H4)(CH3) 413, 
516, 543 

303.7 85 

(TPP)FeC(OCH3)(CH(CH3)2) 414, 
515, 543 

337.7 85 

(TTP)FeC(OCH3)(CH3) 411, 
513, 541 

324 85 

(TrP)FeC(0Et)(CH3) 411, 
514, 541 

85 

(TTP)FeC(SCH2CgHJ(CH3) 413, 
517, 544 

85 

(TPP)FeC(a)(CH(CH3)2) 412, 
520, 547 

85 

(TPP)FeC(a)(CH20H) 302.7 85 

(TPP)FeC(a)(CH0HC6Hs) 303.6 85 
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Table 4,1 cont 

Complex 
A 

UV-Vis 
(nm) 

"CS 
ppm 

'HôoH 
ppm 

Réf. 

[(TPP)RhC(NHCH2C6H5)J^ 101 1 

1 [(TPP)RhC(NH-p-a- 101 1 

[(0EP)RhC(NHCH2CeH;)2]+ . 101 

[(OEP)RhC(NH-p-a-

WzT 

101 

[(TPP)RhC(NHCHJC6H5)2(P( 
0Me)3)]+ 

101 

[(TPP)RhC(NHCH2CgH^2(P( 
Me)3)r 

101 

[(TPP)RhC(NHCH2C6H5)2(C 
NCHjCfiHs)]* 

2.030(11) 101 

[(OEP)RhC(NHCH2QH5)2(P 
(OMe),)]* 

101 

(TTP)RuCHC02Et 408, 529 13.44 98. 
70 

(TTP)RUCHCH3 395, 
421, 527 

13.03 98, 
70 

(TTP)RuCHSi(CH3)3 408, 527 19.54 100, 
70 

(TTP)RuC=C(p-A-C6H4)2 100 

(TPP)RuC=C(p-A-C6H4)2 416, 
522, 542 

94 

(1TP)RUCH(0CH3) 7.50 70 

(TTP)0SCH(0CH3) 9.80 70 

(TMP)RuCHC02Et 404, 525 13.79 70 

(0EP)RUCHCH3 12.48 70 

(OEP)RUC(CH3)2 70 
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Table 4.1 conL 

Complex I^M=C 

Â 
UV-Vis 
(nm) 

"C ô 
ppm 

'H ôoH 
ppm 

Réf. 

(0EP)RUCHQH5 13.06 70 

(0EP)RuC(CA)2 70 

(0EP)RuŒC02Et 335, 
381, 396 
420, 559 

12.91 70 

(0EP)RUCH(0CH3) 7.07 70 

(OEP)RuCHSi(CH3)3 342, 383 
428, 555 

18.85 70 

(OEP)OSC(CH3)2 70 

(0EP)0sCHQH5 20.10 70 

(0EP)0sCHC02Et 375, 
427, 550 

21.38 70 

(0EP)0SCH(0CH3) 9.59 70 

Figure 4.2. l,3-benzodioxol-2-ylidene 
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Mansuy's method.'® Upon treating this complex with an excess of n-butylthiolate, the six 

coordinate anion, [(TPP)Fe(l,3-benzodioxol-2-ylidene)(S°Bu)]', was prepared. 

Treating (TPP)Fe=CCIR with alcohols or thiols leads to the formation of new carbene 

complexes, (TPP)Fe=CRR' where CRR' is C(OCH3)(CH3), CCOEtXCHj), C(OCH3)(CH(CH3)2), 

or QSCHjPhXCHj). The reaction of primary amines with (TPP)Fe=CCl2 generates isonitrile 

complexes rather than new carbene complexes.'® 

Resonance Raman and inftared spectra of (TPP)Fe=CCl2 and (TPP)Fe=CBi2 have been 

measured by Nakamoto and coworkers." The spin state marker, Vj, at 1569 cm"' and the 

oxidation sensitive band at 1370 cm"' suggest that the iron(IV) centers are low spin in these 

complexes. 

CoUman and co-workers reported the preparation of ruthenium porphyrin carbene 

complexes. Treating the rathenium dimer complex [(TTP)Ru]2 with ethyl diazoacetate 

produces (TTP)Ru=CHC02Et.'® Similarly (TTP)Ru=CHCH3 can be prepared ftom 

[(TTP)Ru]2 and N2CHŒ3. (TTP)Ru=CHCH3 is also a prepared by the decomposition of 

(TTP)Ru(Et)2. hi solution the ethylidene complex rearranges to the 11^-ethylene complex over 

the course of weeks. The decomposition of tiie diethyl ruthenium porphyrin to the carbene 

complex is believed to take place via a radical process." A third method for preparing 

caibene complexes is the reaction of 1,1-dichloro reagents with the ruthenium porphyrin 

dianion K2[Ru(TTP)]. Several caibene complexes, (TTP)RuCRR' where CRR' is CHCH3, 

CHTMS, or C=C(p-Cl-C6H4)2, have been prepared in this manner."® The TPP analog of the 

vinylidene complex was previously prepared by Balch et al.®^ 

Venburg expanded the work in ruthenium porphyrin carbene complexes and prepared 

the first osmium porphyrin carbenes.™ Starting from either [(Por)Ru]2 or KgERuCPor)] a variety 
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of new porphyrin caibene complexes, (Por)RuCRR' were prepared (For = TTP, CRR' = 

CHOCH3: For = TMP CRR' = CHCOzEt; For = OEF, CRR' = CHTMS, CHOCHj, CCCgH;)!, 

CHCCfiHj), or C(CH3)2). The osmium analogs were also prepared from [(Por)Os]2 or 

KaEOsCPor)] resulting in (For)OsCRR' (For = TTP, CRR' = CHOCH3; and For = OEF, CRR' 

= CHOCH3, CHCCgHs), CCCHj), or CHCO^Et). 

Although a number of reports implicate rhodium porphyrin catbene complexes as 

catalytic intennediates (see Chapter 7) only one report of isolated rhodium caibene complexes 

exists in the literature. Boschi et al. have prepared [(Por)Rh=C(NHR)2]FF6, with OEF or TFF 

and R = p-d-CgH^, or CH^Fh by refluxing (RNC)2Rh(For) in methanol. When excess 

phosphine or isocyanide is present, the alkyl complexes [(For)RhC(NHCH2Fh)2(L)]FF6 (For = 

TFF, L = F(Fh)3, F(0Me)3, and FhCH^NC; For = OEF, L = F(0Me)3) are isolated. A crystal 

structure has been obtain for (FhCH2NC)(TFF)Rh[=C(NHCH2Fh)2]FF6 which indicates that the 

Rh bond is 2.030(11) Â. Typical Rh=C distances are in the range 1.930 - 1.968 Â.'*® The 

long Rh=C bond in the porphyrin complex presumably results from a trans-effect of the 

isocyanide ligand. 

Characterization 

Proton NMR is the most common technique for characterizing metallopoiphyrin 

carbene complexes. a-Proton chemical shifts of the ruthenium porphyrin carbene complexes 

typically fall in the range 12.9 to 13.8 ppm, Table 4.1. Electron donating groups cause 

resonances to be further upfield (sC/fOCH;, 7.07 ppm) and electron withdrawing groups cause 

downfield shifts (=CflTMS, 19.44 ppm).'" Osmium carbene complexes exhibit a-proton 

resonances between 9.59 and 20.38 ppm.^" With the exception of the Fischer type caibene 

complexes (M=CHOR) the osmium a-proton resonances are approximately 7 ppm Anther 
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down field than their ruthenium analogs. For example the a-H shift in (OEP)Os=CHOMe is 

9.59 ppm and (OEP)Ru=CHOMe signal 7.07 pfan, while for (OEP)Os=CHPh and 

(OEP)Ru=CHPh the signals are at 20.10 and 13.06, respectively. These a-H shifts are similar 

to those of nonporphyrin Ru and Os caitene complexes, 13.30 - 18.05 ppm." The only a-

proton shift reported for an iron porphyrin carbene complex, (TPP)Fe=CH(SC6H5), is 13.83.®® 

A few "C chemical shifts have been reported for the caibene carbon in iron porphyrin 

carbene complexes. These occur in the range 210 to 340 ppm (see Table 4.1) and are within 

the normal chemical shift range for metal carbene complexes, 200 - 400.™ 

Limited structural data are available for metalloporphyrin carbene complexes. The 

iron complex (H20)(TPP)Fe=CQ2 has an Fe=C distance of 1.83(3) Â.®^ The only other single-

crystal X-ray structural data on a metalloporphyrin carbene complex was reported for the 

rhodium complex [(CNCH2CgH;)(TPP)Rk=C(NHCH2CgH;)2]* PFg , discussed above. Several 

nonporphyrin structures have been reported for osmium carbenes." 

Synthesis of Metal Centers With Multiple Carbene Ligands 

Multiple carbene ligands on a metal center are of interest due to their potential use in 

making organic compounds. Cw-biscarbene complexes have been proposed as intermediates in 

the isomerization of alkenes"" and the formation of tetrakis(trimelhylsilyl)butatriene ftom 

bis(trimethylsilyl)acetylene.'°^ Several theoretical papers cover the coupling of cis-

biscarbene complexes to form alkenes'°^ and preferred conformations of cw-biscarbene 

complexes.'"® 

Biscarbene complexes were first reported in 1967,'*" only four years after Fischer's 

seminal work on metal monocarbene complexes.'"® These first biscarbene complexes were 
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mercury salts formulated as [Hg(C(NR'R^)0R^)2] The carbene complexes were 

prepared by treating mercuiy(II) acyl complexes, Hg(C(0)NR'R^)2, with R^^OBF^. Similar 

mercury biscarbene complexes were prepared by treating mercuiy(II) acetate with a mixture of 

methylisonitrile and primary amines. The following year, Wanzlick and Schonherr prepared 

mercury salts containing two cyclic carbene ligands, [Hg(N,N-diphenyl-2-

imidazolideneyz^."^ Although the mercury compounds were the first to be formulated as 

biscarbene complexes, Chugaev's salt first reported in 1925,"° was later found to be a 

platinum biscarbene complex. Figure 4.3, with a Pt=C distance of 1.948(5) Â."' 

The first undisputed transition metal biscarbene was reported by Ofele in 1970."^ 

Bis(N,N-dimethyl-2-imidazolidene)chromiumtetracarbonyl was prepared by the photo-induced 

disproportionation of N,N-dimethyl-2-imidazolidenechn)miumpentacarbonyl. Several years 

later, the thermal disproportionation of Cr, Mo, and W monocarbene complexes was reported 

to produce the biscarbene complexes and the hexacarbonyl compounds, eq. 4.1."^ 

NHMe 

NHMe 

Figure 4.3. Chugaev's Salt 

/ / 
2 Cr(CO)6 Cr(C0)5 |Cr(C0)4 

\ \ 
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AU but a few of the complexes containing multiple carbene ligands prepared since 

1970 fall into several general synthetic categories; 1) addition of an electron rich alkene to a 

metal center, 2) addition of an imidazole to a metal complex, 3) nucleophilic attack on a 

coordinated isonitrile, 4) nucleophilic attack on a coordinated carbonyl, 5) a-H abstraction and 

6) addition of a terminal alkyne followed by nucleophilic attack on CI. Each of these 

methods wiU be discussed below. 

Lappert has widely used the addition of an electron rich alkene to metal carbonyl or 

phosphine complexes to produce multiple carbene ligands on a metal center.'" Tetraaza-

substituted alkenes. Figure 4.4, were used to prepare mono-, bis-, tris-, and tetrakis-carbene 

complexes. Multiple carbene complexes have been prepared for Cr, Mo, W, Mn, Fe, Ru, Os, 

Co, Rh, Ir, Ni, Pt, and Au. Chiral biscarbene complexes have also been prepared using this 

method.""' Ofele has recently synthesized rra/w-bis(N-methylbenzothiazolinyl carbene 

complexes) from the appropriate alkene. Figure 4.4, and Mo(CO)6 or WCCO)^."' 

A mercury(II) biscarbene salt, prepared by Schonhetr and Wanzlick"® by the 

addition of N,N'-diphenylimidazolium cation to mercury(U) acetate, [Hg(N,N-diphenyl-2 

/ \ / \ 

(a) (b) 

Figure 4.4. Electron rich alkenes. a)l,r,3,3'-tetraalkyl-2,2'-bi-imidazolidinyUdene b) bis(N-

methylbenzothiazolinylidene) 
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-imidazolidene);] [CIOJ2, has a Hg=C bond length of 2.059(19) Â. This distance is only 

slightly shorter than the o-bond distance of 2.10 Â in Hg(p-C6H4Br)2. Thus only slight 7c-back 

donation occurs from mercury to the carbene carbon. 

Ofele'" also used substituted imidazole cations (Im^) and [M2(CO)io]'̂  M = Cr, Mo, 

and W to prepared a series of biscaibene complexes. A one electron oxidation using Cp^Fe* 

produced the cadonic carbene species [M(CO)4lm2]PFg. X-ray structures of cw-Cr(CO)4(Im)2 

and cis-[Cr(CO)4(Im)2]* were obtained. The Cr=C distance of the neutral complex (2.131(3) 

Â) is slightly longer than that of the cationic species (2.113(4) and 2.119(4) Â). The 

molybdenum and tungsten complexes are isomerized from trans to ds by electrochemical 

oxidation."* After substitution of a caibonyl by a phosphine, the molybdenum complexes 

exist as three isomeric forms, trans-mer, cw-mer, and fac."' 

NucleophUic attack on metal coordinated isonitriles is an effective method for 

introducing multiple caibene ligands to a metal center. The first example of a multi-carbene 

complex produced by this approach was Chugaev's salt mentioned above."^ When 

tetrakis(methyHsonitrile)platinum(II) dichloride was treated with hydrazine, a cyclic biscarbene 

platinum complex, Figure 4.3, was produced. The single crystal X-ray structure confirmed the 

presence of two carbene ligands with a Pt=C distance of 1.948(5) Â. Subsequently, a series of 

Pd biscarbene complexes, Pd(C(NR)Y)2Cl2, was prepared by treating Pd isonitrile complexes, 

Pd(CNR)2Cl2. with HY, where R was />-MeOQH4, p-MeC6H4, QH, or P-NO2QH4 and Y was 

MeO, /j-MeOQH4-NH, p-MeC6H4-NH, QHj-NH, Me2N or (C6H;)(Me)N."'' In the same 

year. Miller and Balch prepared Pt and Pd tetrakis(carbene) complexes by the reaction of the 

dicationic tetrakis(methylisonitrile) metal complexes and methylamine."' A crystal structure 

of Pt(C(NHMe)2)4^^ indicated that the Pt-C distances (2.046(7) and (2.047(7) Â)'" are long 
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compared to Pt-C distances in platinum isonitrile (1.96(1) and carbonyl (1.78 

complexes. Furthermore, the C-N bond (1.310(3) Â) in the tetrakis complex suggested that 

limited 7c-back bonding occurs in this type of metal carbene complex. 

Homoleptic hexacarbene rhodium and cobalt complexes have been prepared by 

intramolecularly incorporating the nucleophile into the isonitrile ligand. The hexacarbene 

complexes were produced from CoCl^ or RhClj'SHjO and CNCH2CHROH, R = H or Me, 

Figure 4.5.'̂ ^ chemical shifts for the carbene carbon are between 200 and 220 ppm and 

are within the normal range for carbene ligands. A pooiiy resolved crystal structure of the 

cobalt complex when R = H clearly shows the six carbene ligands. The same method was 

used to generate bis- and tetrakis-carbene complexes of Ni, Pd, and Similarly, 

treatment of [NiCpCOJz with four equivalents of CNCHjCHjOH and NH^PFg generated a 

biscarbene nickel compound. Figure 4.5.'" 

H 

C o U  
N. 

o-

R = H, Mr 

(a) 

c \ n /c 

H 

•H 

H 

R 6 

CpNi 
o 

R = H, Me 

(b) 

R 

R = H 

(C) 

Figure 4.5. Examples of complexes containing multiple carbene ligands 

Nucleophilic attack at coordinated carbonyls has not been successful as a general 

method for the fonmation of multiple carbene ligands at a metal center. This is primarily due 

to the susceptibility of the initial carbene towards further nucleophilic attack, eq. 4.2'̂ ® and 

4,3.'̂ ' Nonetlieless, Fischer was able to prepare biscarbene complexes of Cr and W, 
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(CO)4M(C(OEt)PMe2)2, by the reaction of the hexacaibonyl complexes with lithium 

dimethylphosphide followed by alkylation.'̂  Similarly, using lithium diisopropylamide 

generated the Mo and W cw-biscarbene (CO)4M(C(OEt)NTPr2)2-"' The "C resonances of the 

carbene carbons occur at 240.8 (Mo) and 237.1 (W) ppm. The W=C bond lengths are 

2.300(9) and 2.304(10) Â. 

[Cp(NO)(PPh3)Re=CH2]^ + MeLi Cp(NO)(PPh3)ReCH2Me + Li+ (4.3) 

Use of dilitliium reagents minimizes the problem of secondary nucleophilic attack at an 

initially formed carbene ligand. For example, Fischer prepared cyclic biscarbene complexes, 

Figure 4.6, by treating the hexacarbonyls of Cr, Mo, and W with o-Li^CgH^ followed by 

allcylation."^ These complexes exhibited "C NMR a-C resonances of 337.97 (Cr), 329.52 

(Mo), and 312.31 (W) ppm. In addition, an X-ray structure of the chromium analog was 

obtained. The Cr=C distances are 2.(X)0(7) and 2.(X)4(7) A."^ Similar complexes of Cr and 

W were prepared using l,2-dilithium-l,2-diphenylethane."' 

(C0)5Ci^C(0Me)Ph + RNH^ (CO);Ci^C(NHR)Ph + HOMe (4.2) 

OEt 

(C0)4M m = Cr, Mo, W 

OEt 

Figure 4.6. Cyclic biscarbene complexes prepared by E. O. Fischer 
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Similar to the method in which monocaitene complexes of early transition metals have 

been isolated, Schrock has prepared tantalum and niobium bisalkylidene complexes. Some of 

this work has been reviewed.''" The bisalkylidene complexes M(=CH^u)ij(Np)L, M = Ta or 

Nb; L = PMe, or PMefh can be synthesized by treating M(=CH'Bu)(Np)3 with the appropriate 

phosphine.^^ A series of alkyl bisalkylidene complexes can be prepared from Ta(Np)4Q. 

The addition of trimethylphosphine generates Ta(=CH'Bu)2(PMe3)2a which readily reacts with 

LiR to produce Ta(=CH'Bu)2(PMe3)2R, where R may be Me, Et, Bu, Np or Mes."' Proton 

and carbon NMR spectroscopy indicate that the two carbene ligands are not equivalent in 

Ta(=CI^Bu)2(Np)L. An X-ray structure of Ta(=CH'Bu)2(PMe3)2(Mes) (6) reveals that the 

carbene ligands occupy equatorial sites and that both metal carbon bonds are short, 1.955(7) 

and 1.932(7) Â,'̂  compared to the Ta=C bond (2,030(6) Â) in CR2Ta(=CH^u)a.'" The 

Ta-C(a)-C(P) angles are 154.0(6)' and 168.9(6)'. This is similar to M=C-C angles of 

monoalkylidene structures and suggests that agostic interactions involving the a-H are 

occurring. The agostic interactions are further supported by low C-H coupling constants, 

proton NMR shifts of a-H's,'"' and a theoretical study,"®. 

Another general method for the preparation of biscarbene complexes involves the 

addition of two equivalents of an alkyne to a metal center followed by nucleophilic attack at 

the coordinated triple bond. This route was first used in 1979 to synthesize Cl2Pt(C(Me)0'Pr)2 

from HjPtOî'ôHjO and TMSOCH in isopropanol."' An X-ray structure reveals that the 

Pt=C bond lengths of 1.92(2) and 1.97(2) Â are shorter than typical Pt=C bonds. 

O'Connor used buta-3-yn-l-ol and Ir(III) complexes to generate the bis-cyclic 

oxacarbene iridium cations shown in eq. 4.4.''"' This reaction may be carried out stepwise, 

allowing the incorporation of two different caibene ligands on the same metal center."' 
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Chiral iridium biscarbene complexes have been prepared in this manner. The a-carbon "C 

NMR resonances for these complexes are between 283 and 286 ppm. The Ir=C bond lengths 

were found to be 2.033(8) and 2.059(7) Â by a single crystal X-ray diffraction study. 

I ^  NCMe L = PPHg |  

R = COgMe L 

Recently Dixneuf and co-workers have prepared the metallocumulene 

bis(alkenylallenylidene)ruthenium complex, trans-

(dppm)2Ru[(=C=C=C(OMe)(CH=CPh2)]2."^ Treating cw-(dppm)2ruthenium dichloride with 

HOC-OC-CPh^OTMS generates the stable (diynyl)ruthenium complex, fran5-(dppm)2Ru(-

CsC-CWC-CPhgOTMS);. Treating the diynyl ruthenium complex with tetrafloroboric acid 

etherate in methanol produces fra/is-(dppm)2Ru[=C=C=C(OMe)(CH=CPh2)]2. 

Summary 

A variety of metal carbene complexes have been reviewed, including metalloporphyrin 

carbene complexes and metal centers containing more than one carbene ligand. Porphyrin 

carbene complexes have been prepared from only the iron triad metals Fe, Ru, Os, and Rh. 

Observation of a "C resonance between 200-400 ppm in the carix)n NMR is a diagnostic tool 

for identifying the presence of a carbene ligand in the poiphyrin complex. 

Multiple carbene ligands present on the same metal center may be prepared by a 

variety of methods. Lappert's method of addition of an electron rich alkene to metal carbonyl 

or phosphine complexes has proven particularly useful for a variety of metals. Nucleophilic 
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attack on a metal bound ligand is effective for ligands such as CO, CNR, and alkynes. As 

many as six caibenes have been complexed to a single metal center. Abstraction of an a-H 

fmm early transition metal alkyls is also capable of producing biscarbene complexes. 
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CHAPTER 5; SYNTHESIS OF OSMIUM PORPHYRIN CARBENE COMPLEXES 

Introduction 

The isolation of the first osmium silylene porphyrin complexes and preparation of the 

first TI^-disilene poiphyrin complexes suggested that the synthesis of an ii^-silene osmium 

porphyrin complex should be possible. As an entry into this chemistry, (TTP)Os=SiEtj-THF 

was examined as a starting material for the preparation of osmium porphyrin T|^-silene 

complexes. When (TTP)0s=SiEt2*THF was treated with ditolyldiazomethane a ditolylcaibene 

osmium porphyrin complex was produced. Under conditions of excess ditolyldiazomethane, 

bis(ditolylcarbene)osmium porjrtiyrin was prepared. A variety of metalloporphyrin carbene 

complexes have been prepared using other diazo reagents. 

Experimental 

General 

All manipulations of reagents and products were carried out under a nitrogen atmo

sphere using a VACUUM/ATMOSPHERES glove box equipped with a model M040H Dri-

Train gas purification system or on a vacuum line using standard Schlenk techniques. All 

solvents were dried and distilled from purple solutions of sodium/benzophenone. NMR 

spectra were recorded on Nicolet 300 MHz or Varian VXR 300 MHz spectrometers. 

Elemental analyses were obtained from Galbraith Laboratories, Knoxville, TN, Oneida 

Research Services, Whitesboro, NY, or Desert Analytics, Tucson, AZ. Ethyl diazoacetate and 

trimethylsilyldiazomethane were purchased from Aldrich degassed by freeze-pump-thaw cycles 

and distilled under reduced pressure. Other diazo reagents were prepared by the oxidation of 
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the hydrazone"^ by yellow mercury (H) oxide in toluene or hexane. WARNING - several of 

the diazo reagents used here are reported to detonate spontaneously. NjCCCHjXQHj), 

N2CH(p-CgH4-CH3) and NjCHCMes) were not isolated but used in situ. Concentrations of 

NgCHdp-CgH^-CHg) and NjCHCMes) were determined by treating the diazo compound with 

benzoic acid and titrating the acid with NaOH.'̂  [OsCTTP)]; was prepared by the literature 

procedure.®^ 

Synthesis 

(TTP)Os=C(P-C4H4.CH3)2 (5). 

A benzene solution (3 mL) of diCp-tolyl)diazomethane (8.3 mg, 37.4 |imol) was added 

to a stirred solution of [Os(TTP)]2 (32.0 mg, 18.6 pmole) in benzene (6 mL). After 1 h, the 

solution was passed through a neutral alumina column (1 cm dia. x 10 cm long) and impurities 

were eluted with benzene. The carbene complex was washed from the column with 

benzene/THF (20:1, V:V). Removal of the solvent under reduced pressure yielded 37.6 mg 

(96%) of brown solid. Analytical data: 'H NMR (CgDg): 8.15 (s, 8H, P-H), 8.01 (d, 4H, p-

%-CH3), 7.88 (d, 4H,p.%.CH3), 7.29 (dd, 8H, p-CA-CHj), 6.03 (d, 4H, o-=CC^^ai^), 

4.26 (d, 4H, 2.38 (s, 12H, p-CgH^-CHj). 1.69 (s, 6H, =CC6H4Cff3) ppm; "C 

NMR (CfiDfi): 265.5 ppm (s. Os=C); UV-vis (C^Hg) 410 (soret), 522, 548 nm; MS{EI} found 

(calcd.) 1055 (1055) [M+H]^, 964 (964) [M+H-tolyl]^ Analytically pure material was 

obtained by crystallization ftom ethanol to produce (TTP)0s=C(CgH4CH3)2 • 2EtOH. NMR 

(QDg) confinns the presence of two molecules of ethanol per porphyrin, which appear at 3.24 

(dq, 4H, CHz), 0.88 (t, 6H, CHg), 0.31 (t, 2H, OH). Anal, calcd. (found) for OsCgyHg^N^Oz: C, 

70.25 (69.99); H, 5.46 (5.15); N, 4.89 (4.69). 
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(TTP)Os=C(H)Si(CH3)3 (6). 

A hexane solution (13.5 pJL) of trimethylsilyldiazomethane (2.0 M, 27 pmole) was 

dissolved in 3 mL benzene. The trimethylsUyldiazomethane solution was added to a stirred 

solution of [OS(TTP)]2 (23.3 mg, 13.5 pmole) in 6 mL benzene. After 2 h, the solvent and 

excess trimethylsilyldiazomethane were removed under reduced pressure. Reciystallizing the 

solid firom 2 mL cold hexane and filtering produced 19.7 mg (76.9%) of brown product. 'H 

NMR (QDg): 28.95 (s, IH. =C//SiMe3), 8.01 (s, 8H, P-H), 7.93 (dd, 8H, p 7.24 

(d, 4H,p-%.CH3), 7.17 (d, AR, p-CS^-CR^, 2.32 (s, \2n, p-C^^-CH^), -1.41 (s, 9H, 

iCH^sSï) ppm. "C NMR (QDg): 295.5 ppm (d, JCH = 124.4 Hz, 0s=O. UV-vis (CgHg): 388, 

420 (soret) ran. Anal, calcd. (found) for OsSiN^Cg^H^: C, 66.07 (64.91); H, 4.91 (4.73); N, 

5.93 (5.80). 

(TTP)0s=CHC02Et (7). 

Ethyl diazoacetate (50 pL, 0.48 mmole) in 50 mL toluene was slowly added (10 h) to 

a vigorously stirred toluene solution (15 mL) of [Os(TTP)]2 (101.5 mg, 0.059 mmole). After 

the addition was completed, the solution was stitred for an additional hour. The resulting 

solution was concentrated to 25 mL under reduced pressure and eluted down a florisil column 

(1 cm dia. x 10 cm long). Impurities were removed with toluene and the product was eluted 

with toluene:THF (10:1). Removal of the solvent under reduced pressure afforded 87 mg 

(78%) of orange-brown solid, Recrystallization of the resultant solid from toluene/hexane 

produced 37 mg (33%) of dark crystals. 'H NMR (QDg): 21.60 (s, IH, =CHCO^t), 8.35 (s, 

8H, P-H), 8.02 (d, 4H, p-C^.-Ca^), 7.96 (d, 4H, p-C^.-CH^ ), 7.28 (d, 4H, p-^-CHg), 

7.19 (d, 4H, p-Cgff^-CHg), 2.36 (s 12H, /J-QH4-CH3C//3), 2.67 (q, 2H, zzCHCOzC/fzCH;), 0.26 
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(t, 3H, =CHC02CH2a/3) ppm, "C NMR (C^Dg): 211.6 ppm (d, Jg» = 132.8 Hz, 0s=O. UV-

vis (CfiHfi): 398, 408 (soret) nm. Anal. Calcd. (found) for C, 66.08 (66.04); H, 

4.48 (4.78); N, 5.93 (5.33). 

(TTP)Os=C(H)(2,4,<î-(CH3)3-C«H2) (8). 

A toluene solution (35 mL) of 2,4,6-trimethylphenyldiazomethane (0.00663 M, 232 

jimole) was slowly added (5 h) to a vigorously stirred toluene solution (6 mL) of [OsTTPj^ 

(52.5 mg, 30.5 pmole). The resulting solution was concentrated to 20 ml under reduced 

pressure and eluted down a florisil column (1 cm dia. x 10 cm long). Impurities were 

removed with toluene and the product was eluted with toluenerTHF (10:1 v/v). Removal of 

the solvent under reduced pressure afforded 50.6 mg (84%) of orange-brown solid. 'H NMR 

(QDg): 20.78 (s, IH, =CH), 8.19 (s, 8H, p-H), 7.99 (d, 4H, 7.89 (d, 4H,p-C^,-

CH3), 7.25 (dd, 8H. p-^-CH,), 5.59 (d, 2H, w-Ceff^), 2.36 (s 12H, p-C^^-CH^), 1.77 (s. 

3H, P-C//3), 0.39 (s, 6H, 0-0/3) ppm. "C NMR (QDg): 248.8 ppm (d. Je» = 141.1 Hz, 

Os=C). UV-vis (CgHg): 418 (soret), 518, 550 nm. 

(TTP)0s=C(H)(^>-CJH,-CH3) (9). 

A toluene solution of p-tolyldiazomethane (20 mL, 0.0044 M, 88 nmole) was slowly 

added (4 h) to a vigorously stirred toluene solution (6 mL) of [OsTTPjj (41.0 mg, 23,8 

fimole). The solvent was removed under reduced pressure to produce 19.3 mg of crude 9. 'H 

NMR (CfiDg); 19.82 (s, IH, =CH), 8.21 (s, 8H, p-H), 8.01 (d, 4H, p-QA/rCHa), 7.90 (d, 4H, 

P-C6//4-CH3), 7.26 (d, 8H,p-CV/4-CH3), 5.69 (d, 2H, ^CHip-CJfit-CHi), 4.83 (d, 2H, =CH(p-

%-CH3), 2.34 (s 12H, p-C^^-CHj), 0.41 (s, 3H, ^CHip-C^^-CHi) ppm. 
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(TTP)OS=C(CH3)(C«H5) (10). 

This complex was prepared using the method described for 9 with [O^TTP]; (15.9 mg, 

9.2 pmole) and an excess of methylphenyldiazomethane. 'H NMR (QDg): 8.16 (s, 8H, P-H), 

8.00 (d, 4H,p-CeH4-CH3), 7.93 (d, 4H,p-CA-CH3). 7.26 (dd, ^ 6.54 (t, IH, 

p-C^i), 6.26 (t, 2H, 4.10 (d, 2H, o-C^^), 2.35 (s 12H. -4.36 (s, 3H, 

=CC//3) ppm. "C NMR (CgDg): 263.9 7 87 Hz, Os=C) ppm. UV-vis (toluene): 410 

(soret), 424 sh, 516, 540. 

(TTP)Os(=C(p-C,H4-CH3)^)j (11). 

A benzene solution (3 mL) of di(p-tolyl)diazomethane (9.4 mg, 42.3 |imol) was added 

to a stirred solution of [OsCTTP)]; (20.3 mg, 11.8 pnole) in benzene (6 mL). After 4.5 h the 

solvent was removed under reduced pressure. The ratio of 11 to 5 was 2. 'H NMR (CgDg): 

8.63 (s, 8H, p-H), 7.99 (d, SKp-^-CHg), 7.33 (d, 8H,/7-C6f/4-CH3), 5.97 (d, 4H, m-

=C%-CH3), 3.12 (d, 4H, o-=CC^^-CR^), 2.42 (s, \2Y{, p-C^Yi^-QH^, 1.68 (s, 12H, =CQH4-

Ci/3) ppm; NMR (CgDg): 305.5 ppm (s, Os=C). 

(TTP)Os(=C(CH3)(CgH5))2 (12). 

This complex was prepared in an NMR tube fwm [OsCTTP)]; (-2 mg, 1.2 pmole) and 

an excess of methylphenyldiazomethane in hexane. 'H NMR (CgDg): 8.66 (s, 8H, P-H), 8.06 

(d, 8H, p.Cg//4-CH3), 7.29 (d, 8H, p-CS^-Oi^, 6.37 (t, 2H, p-Cgff,). 6.16 (t, 4H, m-Cg/Zj), 

3.01 (d, 4H, 0-Q//5), 2.40 (s, 12H, p-C^^-CH^), -3.17 (s, 6H, =CCH^) ppm. 
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. X-ray Structure Determination of 5 Toluene % Hexane 

A single ciystal of (TTP)0s=C(^-C6H4-CH3)2 CyHg % suitable for X-ray stmcture 

analysis was grown by slow evaporation of a toluene/THF/hexane solution. A brown plate

like crystal having approximate dimensions of 0.35 x 0.35 x 0.12 mm was attached to a glass 

fiber and mounted on an Siemens R3m/V diffractometer with graphite monochromated Cu 

radiation (X = 1.54178 Â) for data collection at -50 ± 1 °C. The cell constants for data 

collection were determined from a list of reflections found by a rotation photograph. Pertinent 

data collection wd reduction information are given in Table 5.1. Lorentz and polarization 

corrections and an absorption correction using the semi-empirical method were applied. In 

addition, a correction based on a decay in the standard reflections of 3.4% was used. The 

agreement factor for the averaging of observed reflections was 2.8% (based on F). 

The centric space group C2/c was initially indicated by systematic absences and 

intensity statistics.'̂ ' The positions of most of the porphyrin complex atoms were 

determined by direct methods."' The remaining non-hydrogen atom positions were determined 

by successive difference Fourier maps. All non-hydrogen atoms of the porphyrin complex 

were refined with anisotropic thermal parameters. After the least-squares converged all 

hydrogen atoms were placed at calculated positions 0.96 Â from the attached atom with 

refined isotropic temperature factors. A solvent molecule of toluene was found and 

constrained to refine as an idealized rigid group. Two atoms near an inversion center, (C80) 

and C(82), were found and appear to belong to a hexane of solvation. Both molecules of 

solvation have more thermal motion than the porphyrin complex but appear to be fully 

occupied. All atoms refined with positive-definite anisotropic thermal parameters except U22 

of C19. Therefore U22 of C19 was fixed at an average value derived fiom neighboring carbon 
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Table 5.1. Crystal data for (TTP)Os=C(p-CfiH4-CH3)2-C;Hg-^ CgH^ 

Formula 

Fomiula weight 

Space Group 

a, Â 

b, Â 

c . Â  

a, deg 

P, deg 

Y, deg 

V,Â 

Z 

dwc, g/cm' 

Crystal size, mm 

H(CuKJ, mm' 

Data collection instrument 

Radiation (monochromated in incident beam) 

Temperature, °C 

Scan method 

Data col. range, 20, deg 

No. data collected 

No. unique data, total (with F/ > 4o(F/)) 

Number of parameters refined 

Trans, factors, max., min. (y-scans) 

R' 

R." 

Quality-of-fit indicator 

Largest shifl/esd, final cycle 

Largest peak, e/Â' 

1252.6 

C2/C 

28.003(6) 

14.385(3) 

33.748(8) 

90.0 

114.51(2) 

90.0 

12370(5) 

8 

1.345 

0.35 X 0.35 X 0,12 

4.266 

Siemens SHELXTL 

CuK^ (X = 1.54178 Â) 

-50(1) 

28-0 

5.0-115.0 

18182 

8334 (7564) 

665 

0.1764, 0.9775 

0.0445 

0.0536 

2.43 

0.013 

1.15 

'R = 2IIF„I - IF,I/JF„I X = WIFol - IFJ)^/S(dIF/]^ © = l/o^lFJ) 
'Quality-of-fit = [Zm(IFJ - IFJ)'/N^ - N_^H 
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atoms for the puipose of making a reasonable thermal ellipsoid drawing. No unusually short 

intermolecular non-bonded contacts are observed. 

X-ray data collection and structure solution were carried out at the Iowa State 

Molecular Structure Laboratory. Refinement calculations were performed on a Digital 

Equipment Corp. VaxStation 3100 computer using the SHELXTL PLUS version 4.0 

programs. 

Results 

Synthesis 

When a daric brown benzene solution of the paramagnetic dimer [Os(TTP)]2 is treated 

with one equivalent of N2C(p-C6H4-CH3)2 at ambient temperature, the solution becomes orange. 

The 'H NMR spectrum of the material isolated from this reaction is consistent with a new 

diamagnetic metalloporphyrin carbene complex formulated as (TTP)0s=C(p-CgH^-CH3)2, 5. In 

CgDg the ditolylcarbene complex maintains a time-averaged four-fold porphyrin symmetry as 

indicated by a single ^-pyrrole signal at 8.15 R)m and the single methyl resonance at 2.39 

ppm. The appearance of resonances for the porphyrin o-, o'-, m-, and m'-tolyl protons at 8.01 

(d), 7.88 (d), and 7.29 (dd) Rpm is consistent with a mono-carbene complex. A six-proton 

singlet at 1.69 R)m and two doublets at 6.03 (4H) and 4.26 (4H) ppm are observed for the 

tolyl substituents of the caitene ligand. The upfield shifts of these resonances are 

characteristic of protons above a porphyrin ring current. Besides the normal porphyrin 

resonances, the NMR spectram of complex 5 has a singlet at 265.5 ppm. Electron impact 

ionization of 5 allowed the mass spectral observation of an ion having a mass of 1055 amu, 

corresponding the molecular ion plus one hydrogen. Crystals suitable for a single crystal X-
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ray dif&acdon study were grown from toluene/THF/hexane. The molecular structure (yide 

itrfra) confirms the proposed formulation. 

The carbene complexes 6-10 are prepared in a similar manner, eq. 5.1. For synthesis 

of the less sterically hindered carbene complexes 7-10, slow addition of the diazo reagent is 

necessary to minimize alkene formation (see Chapter 6), Noteworthy in the proton NMR 

spectra of 6-9 are the a-H resonances from the carbene ligands. These are observed at very 

low field, 19.82 - 28.95 ppm, for all four complexes. The coupled "C NMR spectra for 6-8 

exhibit doublets in the region 211 - 295.5 ppm with values ranging between 124.4 and 

141.1 Hz. These values are typical for carbene complexes. A "C NMR resonance for 10 

occurs at 263.9 ppm. 'H NMR of a-"C enrich 10 exibits 7.87 Hz coupling for the resonance 

at -4.36 ppm, typical of two bond coupling for an sp^ hybridized carboa'"® 

% [Os(TTP)]2 + NzCRR' (TTP)Os=CRR'+ N2 (5.1) 

5, R = R' = P.QH4-Œ3 

6, R = H, R' = SiMe^ 

7, R = H, R' = COgEt 

8, R = H, R' = 2,4,6.(^3)3% 

9, R = H, R' = P-C6H4-CH3 

10, R = CH3, R' = CGH; 
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Biscarbene Complexes 

When a benzene or toluene solution of the paramagnetic dimer [Os(TTP)]2 is treated 

with an excess of N2C(p-tolyl)2 at ambient temperature the solution becomes orange. The 'H 

NMR spectrum of the material isolated from this reaction contains 5 and a new diamagnetic 

metalloporphyrin carbene complex foraiulated as (TTP)Os[=C(p-C6H4-CH3)2]2,11 In CgDg the 

bis(ditolylcarbene) complex maintains a time-averaged four-fold porphyrin symmetry as 

indicated by a single p-pyrrole signal at 8.63 H)m and the single methyl resonance at 2.42 

ppm. The appearance of only two signals for the o-, and m-tolyl protons of the poiphyrin at 

7.99 and 7.33 ppm indicate that mirror symmetry in the poiphyrin plane is present. A twelve 

proton singlet is observed at 1.68 ppm and is assigned to the methyl protons of the carbene 

tolyl group. The m- and o-protons of the these tolyl groups arc observed as two doublets at 

5.97 and 3.12 ppm, respectively. The "C spectrum exhibits a new resonance at 305.5 ppm as 

well as the normal porphyrin resonances. 

[Os(TTP)]2 + 2N2CRR'(TTP)0S(=CRR')2 + 2N2 (5.2) 

11, R = R' = p-QH^-CHg 

12, R = CH3, R' = QHs 

The biscaitene complex 12 is prepared similarly to complex 11 using an excess of 

methyl|dienyldiazomethane, eq. 5.2. The 'H NMR spectrum contains resonances for both 10 

and 12. The biscarbene complex has porphyrin p-H and tolyl signals similar to those of 11 at 

8.66, 8.06, 7.29, 2.40 ppm. The two carbene methyl groups exhibit a six-proton resonance at 

-3.17 ppm. The phenyl protons of the carbene ligand show NMR signals at 3.01 (o-H), 
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6.16 (m-H), and 6.37 (p-H) ppm. 

Reactions 

All of the carbene complexes decompose to uncharacterized compounds on exposure to 

air. Treating the di(p-tolyl)carbene complex, 5, with an excess of pyridine-N-oxide at ambient 

temperature produces (TTP)0s02 and 4,4'-dimethylbenzophenone over the course of several 

days as monitored by 'H NMR. However, complex 5 shows no reactivity towards Mel, 

acetone, ethanol, or hexamethylsilacyclopropane over a period of several days at ambient 

temperature. 

X-ray Structure of 5 THF ToIuene V4 Hexane 

The molecular structure of the ditolylcarbene complex, S THF Toluene-H Hexane was 

determined by single crystal X-ray diffraction. The structure is clearly established as an 

osmium carbene complex as shown in Figure 5.1. Crystallographic data for the structure 

determination and fractional coordinates for non-hydrogen atoms are listed in Tables 5.1 and 

5.2. Table 5.3 gives selected bond distances and angles. 

The ditolylcarbene complex, 5-THF-Toluene-^ Hexane, crystallizes in the monoclinic 

space group C2/c with eight molecules per unit cell. As expected for a six coordinate 

complex, the porphyrin ligand in this molecule is nearly planar. The largest deviation occurs 

at N2, which is 0.069 A out of the mean poiphyrin plane. The coordination sphere of the 

osmium atom approaches an ideal octahedral geometry with bond angles between cis-related 

ligands ranging from 84.6* to 94.8*. The osmium atom is slightly out of the mean porphyrin 

plane 0.14 Â towards the carbene ligand. The Os-04 distance of 2.327(3) Â in 5 is similar to 

the Os-0 distance reported for the diethylsilylene complex, (TTP)(EtjSi-THF)Os-THF, 2.40(2) 

Â, discussed in Chapter 3. 
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Figure 5.1. Molecular structure for (TrP)Os=C(tolyl)2-THF Toluene î4 Hexane with 50% 

probability thermal elipsoids and partial atom numbering scheme. 
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Table 5.2. Fractional atomic coordinates and equivalent isotropic displacement coefficients 
Atom X y z Ueq(Â^) 

Os 0.3157(1) 0.3627(1) 0.1423(1) 0.031(1) 

N1 0.3732(1) 0.2861(3) 0.1380(1) 0.034(2) 

N2 0.3685(1) 0.4695(3) 0.1689(1) 0.033(2) 

N3 0.2604(1) 0.4362(3) 0.1530(1) 0.034(2) 

N4 0.2667(1) 0.2502(3) 0.1255(1) 0.035(2) 

CI 0.3696(2) 0.1926(4) 0.1249(2) 0.038(2) 

C2 0.4186(2) 0.1635(4) 0.1250(2) 0.046(2) 

C3 0.4516(2) 0.2358(4) 0.1375(2) 0.047(2) 

C4 0.4242(2) 0.3126(4) 0.1464(2) 0.038(2) 

C5 0.4453(2) 0.4008(4) 0.1614(2) 0.035(2) 

C51 0.4998(2) 0.4208(4) 0.1660(2) 0.041(2) 

C52 0.5403(2) 0.4420(4) 0.2063(2) 0.047(2) 

C55 0.5605(2) 0.4425(5) 0.1334(2) 0.063(3) 

C54 0.6009(2) 0.4637(5) 0.1743(2) 0.056(3) 

C53 0.5902(2) 0.4631(4) 0.2095(2) 0.053(3) 

C56 0.5110(2) 0.4212(5) 0.1297(2) 0.055(3) 

C57 0.6562(2) 0.4855(5) 0.1790(2) 0.076(3) 

C6 0.4189(2) 0.4724(4) 0.1714(2) 0.038(2) 

C7 0.4391(2) 0.5638(4) 0.1848(2) 0.044(2) 

C8 0.4014(2) 0,6143(4) 0.1891(2) 0.045(2) 

C9 0.3572(2) 0.5555(3) 0.1793(2) 0.034(2) 

CIO 0.3092(2) 0.5828(3) 0.1790(2) 0.038(2) 

ClOl 0.3046(2) 0.6828(4) 0.1904(2) 0.041(2) 

C102 0.3306(3) 0.7167(4) 0.2317(2) 0.079(3) 

C103 0.3264(3) 0.8091(5) 0.2407(2) 0.083(3) 



www.manaraa.com

Table 5.2. cont. 

Atom X 

73 

y z Ueq(Â^) 

C104 0.2996(2) 0.8732(4) 0.2088(2) 0.053(3) 

C105 0.2745(3) 0.8392(4) 0.1683(2) 0.060(3) 

C106 0.2765(2) 0.7463(4) 0.1584(2) 0.056(3) 

C107 0.2999(2) 0.9745(4) 0.2189(2) 0.069(3) 

Cil 0.2650(2) 0.5259(4) 0.1681(2) 0.040(2) 

C12 0.2167(2) 0.5529(4) 0.1705(2) 0.050(3) 

C13 0.1837(2) 0.4815(4) 0.1572(2) 0.051(3) 

C14 0.2100(2) 0.4073(4) 0.1456(2) 0.041(2) 

C15 0.1892(2) 0.3188(4) 0.1306(2) 0.037(2) 

C151 0.1333(2) 0.3029(4) 0.1230(2) 0.044(2) 

C152 0.1214(2) 0.2384(4) 0.1483(2) 0.049(2) 

C153 0.0704(2) 0.2199(5) 0.1406(2) 0.062(3) 

C154 0.0289(2) 0.2636(5) 0.1072(2) 0.076(3) 

C155 0.0408(2) 0.3259(5) 0.0830(2) 0.064(3) 

C156 0.0922(2) 0.3462(5) 0.0895(2) 0.107(4) 

C157 -0.0272(2) 0.2411(6) 0.1001(2) 0.037(2) 

C16 0.2151(2) 0.2476(4) 0.1216(2) 0.043(2) 

C17 0.1945(2) 0.1564(4) 0.1065(2) 0.042(2) 

C18 0.2322(2) 0.1046(4) 0.1028(2) 0.036(3) 

C19 0.2778(2) 0.1626(4) 0.1141(2) 0.039(2) 

C20 0.3254(2) 0.1349(3) 0.1136(2) 0.041(2) 

C201 0.3284(2) 0.0379(4) 0.1009(2) 0.052(3) 

C202 0.2946(2) 0.0046(4) 0.0596(2) 0.038(2) 

C203 0.2953(3) -0.0881(5) 0.0492(2) 0.064(3) 

C204 0.3287(3) -0.1513(5) 0.0792(3) 0.069(4) 
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C205 0.3619(2) -0.1182(4) 0.1190(3) 0.067(3) 

C206 0.3611(2) -0.0254(4) 0.1305(2) 0,053(3) 

C207 0.3282(3) -0.2522(4) 0.0687(2) 0,092(4) 

C21 0,2922(2) 0.4057(3) 0.0858(2) 0,036(2) 

en 0.3279(2) 0.4164(4) 0.0618(2) 0.038(2) 

C23 0.3330(2) 0.3475(4) 0.0361(2) 0.050(2) 

C24 0.3652(2) 0.3568(4) 0.0144(2) 0.057(3) 

C25 0.3928(2) 0.4388(5) 0.0170(2) 0.057(3) 

C26 0.3872(2) 0.5078(5) 0,0431(2) 0.066(3) 

Cil 0.3564(2) 0.4978(4) 0.0650(2) 0,060(3) 

C28 0.4280(3) 0.4461(6) -0.0066(2) 0,093(4) 

C29 0.2373(2) 0.4348(4) 0.0585(2) 0.037(2) 

C30 0.2010(2) 0.3728(4) 0.0321(2) 0.051(2) 

C31 0.1497(2) 0.4002(5) 0.0066(2) 0.059(3) 

C32 0.1341(2) 0,4901(6) 0.0074(2) 0.071(3) 

C33 0.1694(2) 0.5510(5) 0.0346(2) 0.067(3) 

C34 0.2215(2) 0.5251(4) 0.0597(2) 0.050(2) 

C35 0.0784(2) 0.5180(6) -0.0209(3) 0.106(4) 

04 0.3435(1) 0.3058(3) 0.2129(1) 0.045(1) 

C41 0.3062(2) 0.2890(6) 0,2314(2) 0,080(3) 

C42 0.3343(3) 0.2284(5) 0,2709(2) 0,081(4) 

C43 0.3878(3) 0.2170(5) 0.2753(2) 0,080(3) 

C44 0.3856(2) 0.2405(5) 0,2309(2) 0,068(3) 

C71 0.1089(3) 0.7762(6) 0.0627(3) 0,289(4) 

C70 0.1515 0.8336 0.0575 0.289(4) 
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C72 0.0568 0.7846 0.0324 0.289(4) 

C73 0.0177 0.7319 0.0372 0.289(4) 

C74 0.0306 0.6708 0.0722 0.289(4) 

C75 0.0827 0.6624 0.1025 0.289(4) 

C76 0.1218 0.7151 0.0977 0.289(4) 

C80 0.0315 0.4496 0.1946 0.276(5) 

C81 0.0109 0.4843 0.2343 0.276(5) 

C82 0.0152 0.3602 0.2317 0.276(5) 
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Table 5.3. Selected intramolecular bond distances and angles 

Bond distances in angstroms Bond angles in degrees 

Atom 1 Atom 2 Distance Atom lAtom 2 Atom 3 Angle 

N1 Os C21 93.6(2) 
Os N1 2.004(4) 

93.6(2) 
2.004(4) 

N1 Os 04 86.7(1) 
Os N2 2.061(4) 

86.7(1) 
2.061(4) 

N2 Os C21 94.8(2) 
Os N3 2.027(4) 

94.8(2) 
2.027(4) 

N2 Os 04 86.6(1) 
Os N4 2.044(4) 

86.6(1) 
2.044(4) 

N3 Os C21 92.1(2) 
Os C21 1.847(5) 

92.1(2) 
1.847(5) 

N3 Os 04 87.5(1) 
C21 C22 1.533(8) 

87.5(1) 
1.533(8) 

N4 Os C21 93.9(2) 
C21 C29 1.487(6) 

93.9(2) 
1.487(6) 

N4 Os 04 84.6(1) 

C21 Os 04 178.5(2) 

Os C21 C29 124.6(4) 

Os C21 C22 123.2(3) 

C22 C21 C29 112.2(4) 

Numbers in parentheses are estimated standard deviations in the least significant digits. 
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The 0S-C21 bond length in 5-THF-Toluene-Vi Hexane (1.847(5) Â) is short for 

typical osmium caibene complexes, 1.90(1) Â to 1.94(1) Â, '̂ The Os-C21 distance is 

comparable to the Os-CO metal carbon distance of 1.83(2) Â in Cl2(C0)(PPh3)20s=CHPh, 

but is significantly shorter than the Os=C distance 1.94(1) Â." This suggests unusually 

strong back-bonding from the metal center. The remaining bond lengths and angles in the 

caitene ligand are within normal ranges. 

Discussion 

A straight forward method for preparing osmium porphyrin carbene complexes 

involves treating [Os(TTP)]2^ with the appropriate diazoalkane, as shown in eg. 5.1. The 

yields of carbene complexes from this reaction are high (77 - 96 %). The fomiation of the 

mono-carbene complexes 5-8 is complete within 10 minutes. These complexes are 

sufficiently stable to be purified on neutral alumina or florisil flash columns. The resulting 

solids are stable for at least three months when stored in a nitrogen atmosphere. 

The resonances of the a-protons in complexes 6-9 are farther downfield than those 

observed for non-porphyrin osmium carbene complexes, 13.81-18.05 ppm." Particularly 

noteworthy is the a-H shift of the trimeûiylsilyl carbene complex 6 at 28.95 ppm. This 

extends the observed range of a-H shifts for osmium carbenes by about 7.5 ppm. The a-H 

resonances of the osmium carbene complexes are approximately 7 ppm further downfield 

than their ruthenium analogs. 

In solution the carbene complexes 5-10 appear to be stable as five coordinate, 16-

electron complexes. Although the crystal structure of 5 THF shows that a THF molecule is 

coordinated as a sixth ligand to osmium in the solid state, in solution a coordinated THF is 
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not observed by NMR. Crystals of 5 obtained from elhanol show two equivalents of 

alcohol are present, in solution no coordinated alcohol is observed. None of the isolated 

complexes show any coordinated THF after removal of the solvent. 

The slow formation of biscarbene complex, 11, ftom the monocaitene complex 5 

upon the addition of an excess of the N2C(p-CgH4-CH3)2 can be monitored by 'H NMR. This 

fro/w-biscarbene complex has not been isolated in pure fonn and always contains small 

amounts of the mono-caitene complex 5. In solution 11 decomposes to Ûie monocaibene 

complex, 5 and tetratolylethene over the course of several days at ambient temperature. The 

NMR chemical shift at 305.5 ppm for 11 is diagnostic for carbene ligands. The presence 

of only one down-field resonance in the "C NMR spectrum indicates that the two caibene 

ligands are equivalent. 

Concluding Remarks 

Several new osmium porphyrin carbene complexes have been prepared and 

characterized. In solution these carbene complexes appear to be stable as 16-electron species. 

Strong TC-back donation from the osmium to the carbene carbon apparently occurs as 

indicated by the short osmium carbon distance in 5. The caibene complexes containing a-

protons exhibit resonances at extremely low-field in the proton NMR, while the "C 

resonances are typical of metal carbene ligands. 
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CHAPTER 6: CATALYTIC PRODUCTION OF ALKENES 

Introduction 

Although the oiganometallic chemistry of metallopoiphyrins has developed rapidly 

over the past few years,"' woik in this area involving osmium porphyrin complexes has 

received less attention. Moreover, while various metallopoiphyrins catalyze the production 

of alkenes,'" cyclopropanes"* and the oxidative caibonylation of amines,"' use of 

osmium porphyrins for catalytic reactions has been limited thus far to oxidations of 

alkenes.'̂ " Subsequent to our preparation of the osmium porphyrin carbene complexes in 

Chapter 5, we turned our attention to the reaction of these complexes with diazo reagents. In 

this chapter, the use of osmium poiphyrin complexes to facilitate the highly stereoselective 

catalysis of diazoalkanes to alkenes will be discussed."' 

The decomposition of diazoalkanes in the presence of metal complexes to form 

alkenes has been known for over 20 years.'® Product ratios of disubstituted alkenes 

slightly favor the cw-isomer. The mechanism of this transformation is not well understood. 

Thus  seve ra l  pos s ib l e  pa thways  have  been  p roposed  inc lud ing  r ad i ca l  cha in s ,b inuc l ea r  

coupling of metal caitenes,'®*-"'®"^ and nucleophilic attack of a diazo reagent at a metal 

carbene center.™ '̂ ^ '®^®-^ The later two mechanisms have been previously suggested for 

catalytic production of alkenes by ruthenium porphyrin complexes.™ 
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Experimental 

General 

AU manipulations of reagents and products were carried out under a nitrogen atmo

sphere using a VACUUM/ATMOSPHERES glove box equipped with a model M040H Dri-

Train gas purification system or on a vacuum line using standard Schlenk techniques. All 

solvents were dried and distilled from puiple solutions of sodium/benzophenone. NMR 

spectra were recorded on Nicolet 300 MHz or Varian VXR 300 MHz spectrometers. Ethyl 

diazoacetate and trimethylsilyldiazomethane were purchased from Aldrich degassed by 

fteeze-pump-thaw cycles, and distilled under reduced pressure. Other diazo reagents were 

prepared by the oxidation of the hydrazone"^ by yellow mercuiy (H) oxide in toluene. 

WARNING - several of the diazo reagents are reported to detonate spontaneously, 

N2C(CH3)(Ph), NzCH^olyl) and NjCHCMes) were not isolated. Concentrations of N2CH(p-

tolyl) and NzCHCMes) were determined by treating the diazo compound with benzoic acid 

and back titrating the acid with NaOH. '̂" [OsCTTP)]; was prepared by the literature 

procedure.®^ GC analyses were perfonned using a HP 5890 Series H GC with a DB-5 

capillary column (30 m, 0.32 mm, 0.25 n) with T, = 50 'C for 1 min followed by a 

temperature ramp of 10 'C/min for 10 min. 

Synthesis 

Diethylnudeate (13). 

In a typical experiment, 3.4 mg (3.23 pmole) of (TTP)Os=C(tolyl)2 and dodecane 

(0.10 mL, 44 mmole) were stirred vigorously in 5.0 mL of benzene under an Ng atmosphere. 

Addition of ethyl diazoacetate (0.10 mL, 95 mmole) resulted in the rapid evolution of gas 
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which stopped after 1 min. Alkene product ratios were determined by GC analysis. 

Assignment of the major isomer was made by comparison of the 'H NMR spectrum to that 

of an authentic sample. 

Crossover Reactions. 

In a typical experiment, (TTP)0s=CHC02Et was dissolved in CgDg in an NMR tube. 

NgCHTMS was added and the reaction monitored by proton NMR. Diethyl maleate and 

(TTP)Os=CHTMS were formed. A summary of reactions is listed in Table 6.1. 

Table 6.1. Crossover reactions to form alkenes 

Initial (TTP)Os=CRR' diazo reagent final (TTP)Os=CRR' alkene product 

(TTP)0sCHC02Et N2CHTMS (TTP)OsCHTMS Et02CHC=CHC02Et 

(TTP)0sCHC02Et N2C(tolyl)2 (TrP)0sCHC02Et (tolyl)2C=C(tolyl)2 

(TrP)0sCHC02Et N2C(CH3)(Ph) (TTP)0sC(CH3)(Ph) EtOîCHOCHCOjEt 

(TTP)OsCHTMS N2C(tolyl)2 (TTP)OsCHTMS (tolyl)2C=C(tolyl)2 

(TTP)OsCHTMS N2CHC02Et (TrP)OsCHTMS Et02CHC=CHC02Et 

(TTP)OsC(tolyl)2 NzCHCOzEt (TTP)OsC(tolyl)2 Et02CHC=CHC02Et | 

Results and Discussion 

When anaerobic benzene solutions of [Os(TTP)]2 are treated with excess ethyl 

diazoacetate, rapid evolution of gas is observed and high yields of diethylmaleate and 

diethylftraiarate are obtained. Table 6.2. Depending on reaction conditions, the final metal 

products consist of vaiying ratios of the ethylcaiboxyl carbene complex 7 and [Os(TTP)]2. 

'H NMR and GC analyses indicate that alkene fonnation occurs with a z/e ratio of 26:1. 
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The high stereoselective fonnation of diethylmaleate is also catalyzed by the carbene 

complexes, (TTP)Os=C(p-C5H4-CH3)2 (5), (TTP)Os=C(H)Si(CH3)3 (6), and 

(TTP)0s=C(H)C02Et (7) and the monomeric complexes, (TTP)Os(CO)(py) and 

(TTP)0s(py)2. Table 6.2 summarizes yields and product ratios. These are die highest olefin 

stereoselectivities for the decomposition of diazo compounds reported to date.'̂ *^ 

Previously the largest diethylmaleate/diethylfimiarate ratios (15:1) fiom ethyl diazoacetate 

were observed independently by CoUman and Venburg using a ruthenium porphyrin 

catalyst'" [OsCTTP)]^ also catalyzes the decomposition of NjCHCtolyl) to 

4,4'dimetiiylstilbene with a z/e ratio of 11:1. Again this is much higher than the previous 

ratios reported in the literature."^ Qualitatively, reactions catalyzed by [Os(TTP)]2 or the 

carbene complexes, 5, 6, and 7, reach completion in seconds. Catalyst activity appears to 

remain constant over a period of greater than one week. Thus, additional NjCHCOjEt may 

be added to catalyst solutions with virtually quantitative conversion to alkene and no loss in 

rate or stereoselectivity. Os(TTP)(py)2 and (TTP)Os(CO)(py) show much slower reactivity. 

For example, the bis-pyridine complex requires 1 h to completely convert 0.1 mL of ethyl 

diazoacetate to alkene. This presumably reflects the need for a vacant coordination site in 

order to generate an initial carbene complex. 

Steric factors appear to play an important role in the rate of alkene formation. When 

[Os(TTP)]2 is treated with excess N2C(p-C6H4-CH3)2 in THF, formation of 

tetratolylethylene'̂ ' occurs qualitatively on the time scale of minutes. However, no alkene is 

observed by 'H NMR when N2CHSiMe3 is the substrate over a period of days at ambient 

temperature. The lack of coupling in this case may be due to the large steric constraints of 

the trimethylsilyl group. 
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Table 6.2. Catalyst summary for the formation of olefins from ethyl diazoacetate' 

catalyst mass (mg) 
(±0.1) 

pmole Os 
(±0.01) 

cis/trans 
(±2) 

% olefin 
yield 
(±3) 

turnovers 
(±5) 

[OS(TTP)]2 2.7 3,14 26 
25' 

92 
94' 

140 
284' 

(TTP)OsC(tolyl)2 3.4 3.23 18 94 122 

(TTP)0sCHSiMe3 3.5 3.70 25 99 128 

(TTP)0sCHC02Et 3.6 3.81 24 
25' 
25' 

100 
100" 
100" 

127 
255' 
376' 

(TTP)0s(py)2 3.5 3.44 26 93 129 

(TTP)Os(CO)(Py) 3.7 3.83 22 93 102 

* Conditions; 0.100 mL (0.952 mmol) NjCHCOjEt, 0.100 mL dodecane, 5.00 mL CgHg, 
22 °C. 'Subsequent addition of 0.100 mL NjCHCOjEt. 

A variety of cross reactions have been carried out as shown in table 6.1. When 

(TTP)0s=CHSiMe3 or (TTP)0s=C(p-C6H^-CH3)2 are treated with N^CHCOgEt, only 

diethyhnaleate and small amounts of diethylfumarate are produced. No evidence for the 

formation of mixed olefins is observed by 'H NMR or GC. In addition, the final metal 

products are the original carbene complexes, (TTP)Os=CHSiMe; or (TTP)0s=C(p-CgH4-

CHg);, respectively. This suggests that the catalytic reactions may involve an intermediate 

/ra/iy-biscarbene complex. A moderately stable frow-biscarbene complex (TTP)Os[=C(p-

CgH^-CHg);]^, 11, has been prepared by treating (TTP)0s=C(p-CgH4-CH3)2, 5, with additional 

N2C(p-CgH4-CH3)2 (chapter 5). The alkene forming step may involve attack of a diazo 

reagent at the least hindered caibene ligand of the bis-carbene complex. Figure 6.1, or may 

involve direct coupling between two bis-carbene complexes in a binuclear process. Figure 

6.2. Evidence for the binuclear mechanism was established by monitoring a 70; 1 mixture of 
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(TrP)Os[=C(p-QH4-CH3)2]2 -> aTP)Os=C(p-QH4-CH3)2 + 
11 5 

(P-QH4-CH3)2C=C(P-QH4-CH3)2 (6. 

11:5. Over the period of days, the bis-carbene complex 11 decomposes to produce 

tetratolylethylene and the mono-carbene complex 5, eq. 6.1. 

Concluding Remarks 

Osmium porphyrin caitene complexes 5, 6, 7, [(TTP)0s]2, Os(TTP)(py)2 and 

(TTP)Os(CO)(py) are all capable of catalytically forming allcenes from diazo reagents. The 

stereoselectivity for this process is extremely high for the diazo reagents examined. Evidence 

from crossover experiments indicates that a biscarbene intermediate is involved in the 

catalytic cycle. 

E(02i 

ElOgi CO2EI 

EtOaC EtOgi 
;c=c: 

diethyl maleate 

Figure 6.1. Alkene formation by diazo attack on a biscaibene complex 
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Figure 6.2. Bimolecular mechanism for alkene foraiation 
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CHAPTER 7: CATALYTIC PREPARATION OF CYCLOPROPANES 

Introduction 

Several excellent reviews covering catalytic"® and stoichiometric"^ 

cyclopropanation reactions and mechanisms have appeared. The mechanism of 

cyclopropanation is currently receiving considerable attention. Since publication of the above 

reviews, several significant several significant studies have advanced the understanding of the 

mechanism. These are summarized below. 

Cyclopropanation of alkenes can be accomplished catalyticaUy or stoichiometrically. 

Catalytic systems typically use a diazo reagent as the caibene source and a metal-containing 

mediator which forms a postulated metal carbene intermediate. Transfer of the carbene 

fragment finom the metal to an alkene produces the cyclopropane product. Despite the wide 

variety of catalytic cyclopropanation systems, the putative carbene complex has never been 

isolated or directly observed in a catalytic system. This is somewhat suiprising since the 

second category of cyclopropanation reactions involves the stoichiometric reaction of isolated 

caibene complexes with an alkene to form a cyclopropane. None of the isolated carbene 

complexes show catalytic activity toward cyclopropanation. 

Catalytic Advances 

Copper catalysts are among some of the oldest cyclopropanation catalysts 

known.'®" Recent work has focused on developing chiral catalysts that provide 

enantiomerically pure cyclopropanes. Towards this end, enantiomeric excesses (ee's) as high 

as 99% have been achieved for cyclopropanating styrene by a diazo ester using 4,4*-

disubstituted bis(oxazoline) copper(I) triflate complexes. Figure 7.1.'®' An X-ray structure 
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of the catalyst precursor [LCu(OTf)], reveals a chiral helical polymer/^ with a 

bis(oxazoline) Ugand bridging two copper(I) centers. Semicorrin copper(I) complexes. Figure 

7.1, also exhibit high ee's (> 90%).'" When styrene was used as the substrate, increasing 

the size of the alkyl group in the diazo reagent increased both the anti/syn (a/s) ratio and the 

ee. For example when (lR,3R,4S)-menthyl diazoacetate is used, the a/s = 5.7 and an ee 

greater than 90% for both the anti and syn cyclopropane isomers were acheived. However 

when styrene is cyclopropanated with ethyl diazoactetae, a/s = 2.7 and ee's of 68 % (syn) 

and 85% (anti) were observed. The best a/s ratio reported for cyclopropanation of styrene 

with ethyl diazoacetate is 3.3.'®' 

Figure 7.1. a) bisoxazoline b) semicorrin 

Several years ago Callot demonstrated that rtiodium porphyrins catalydcally 

cyclopropanated a variety of alkenes in the presence of ethyl diazoacetate.'̂  This was the 

first time a metalloporphyrin was used as a cyclopropanation catalyst. Surprisingly, the 

product ratio favored the jy/i-cyclopropane. Kodadek and co-workers have expanded this 

work and have attempted to prepare synthetically useful enantioselective catalysts for the 

formation of cyclopropanes.'" Their approach has been to use rhodium complexes with 

optically active porphyrins to induce chirality into the product. With iodo(5(x,10p,15a,20P-

tetrakis[(R)-l,r-binaphth-2-yl]-porphyrinato)rhodium(III) or iodoitodium "chiral wall" 

CN 

(a) (b) 
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porphyrin, Figure 7.2, poor to moderate enantiomeric excesses were observed.'®'̂  In the 

same report, the catalysts (TTP)RhI and (TMP)RhI were reported to exhibit shape selectivity. 

Thus, 1-alkenes are preferentially cyclopropanated over internal alkenes, cis- are preferred to 

trans-, and disubstituted alkenes are greatly preferred to tetrasubstituted alkenes.^®® Attempts 

to increase the observed ee's by increasing the steric bulk of the poiphyrin ligand were 

unsuccessful. For example, using iodo(5a,lop,15oc,20p-tetrakis[(R)-l-(r-pyrenyl)-

naphthalen-2-yl]-porphyrinato)rhodium(III) or iodorhodium "chiral fortress" porphyrin, Figure 

7.2, resulted in ee's no greater than those observed for the analogous chiral wall complex.'®^ 

Kodadek has also shown that the diazonium complex, (TTP)Rh-C(H)(C02Et)(N2)*r, is the 

predominant steady state species in the catalytic cyclopropanation of styrene with ethyl 

diazoacetate.'®® In addition, kinetic studies suggest that the formation of a riiodium 

carbene complex is at least partially rate limiting.'̂  However, this carbene complex has not 

been isolated or observed. Furthermore, alkenes were demonstrated to bind to the rhodium 

porphyrin complex. A mechanism was postulated, Scheme 7.1, in which the formation of a 

metal porphyrin carbene complex is activated by coordination of an alkene in the trans 

position. 

Figure 7.2. a) Chiral wall porphyrin and b) chiral fortress porphyrin 
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Scheme 7.1 
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Mechanistic Advances 

The remaining advances made since the above reviews have been in the 

understanding of the mechanism of cyclopropanation. It is generally accepted that a metal 

carbene complex participates in the catalysis, but such a species has never been observed in a 

catalytic cycle. As discussed above, recent evidence by Kodadek'®® suggests that the 

formation of a ibodium carbene complex is rate limiting when rhodium porphyrins are the 

catalysts. Colium also provides evidence for the formation of reactive palladium carbene 

complexes as possible intermediates in palladium catalyzed cyclopropanation.^" In this 

case, the presence of a carbene complex was established by trapping experiments. 

Two mechanisms for metal catalyzed cyclopropanation involving metal carbene 
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complexes have been proposed. The first. Scheme 7.2, involves an initial 7t-complex 

between the metal carbene complex and the alkene. Four possible it-complexes are possible 

when a mono-substituted alkene is the cyclopropanation substrate. The two 7C-complexes 

with lowest energy, shown in scheme 7.2, result ftom minimizing the steric interactions 

between the alkene substituent and the metal ligands.'®* The ic-complex is follwed by 

nucleophilic attack of the least hindered position of the alkene double bond on the carbene 

carbon. The incipient y-caibon of the transition state develops a partial positive charge. 

This short-lived transition state collapses to the cyclopropane product by either frontside or 

backside attack. Frontside attack is defined as attack at the a-carbon on the same side as thé 

metal. Backside attack refers to attack by the y-carbon at the a-carbon on the side opposite 

to the M-C bond. An alternative mechanism involves the fonnation of a metaUocyclobutane 

followed by reductive elimmation to form the product. 

The y-cadon mechanism can account for the stereochemistry associated with 

cyclopropanation by alkylidene metal complexes and the trans-stereoselectivity observed in 

reactions with alkyl diazoesters. When alkyl diazoesters are used, stabilization of the 

developing positive charge on the y-caibon by the carbonyl oxygen of the ester group 

adequately accounts for the observed stereoselectivity. This is only possible for the 

intermediate resulting in the fra/w-cyclopropane, scheme 7.3.^® Moreover, a study of the 

effects of alkene substituents on cyclopropane stereochemistry'™ disfavors Ae 

metaUocyclobutane mechanism. 

' In the most reasonable mechanism, the y-caibon cation pathway, an unresolved issue 

involves the manner in which the positively charged y-carbon transition state (Scheme 7.2) 

collapses, via frontside or backside attack. Brookhart has undertaken studies designed to 
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Scheme 12 

Scheme 7 J 

answer this question using the chiral reagent Cp(CO)(PR3)Fe=CHCH3* as an enantioselective 

cyclopropanation reagent"' The ratio of cyclopropane enantiomers exceeds that of the 

anticlinal to synclinal carbene complex. Thus, one isomer of the caibene complex must be 

more reactive towards cyclopropanation. In previous reaction studies, the synclinal rotational 
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isomer was found to be more reactive toward nucleophiles than the anticlinal isomer. Figure 

7.3. To obtain the correct cyclopropane product from the synclinal isomer, back side attack 

at the a-carbon is required. Scheme 7.4. From available data, Brookhart proposed a variable 

transition state model. The structure of the transition state depends on whether it occurs 

early or late in the reaction path. Less reactive metal carbene complexes, such as the more 

electron rich phosphine substituted iron compounds, favor late transition states. In these 

cases the transition state more nearly resembles the cyclopropane product and trans 

stereoselectivity is observed. More reactive electron deficient metal carbene centers, such as 

Cp(CO)2Fe=CHCH3^, favor an early transition state where steric interactions arising from the 

initial approach of the alkene dominate the stereoselectivity. A second study using 

Cp(CO)2FeCH2CH2CH(OMe)Ph and selectively deuterated analogs demonstrate (hat the co-

carbon is inverted during the reaction."^ This strongly supports the mechanism involving 

collapse of a 7-cationic intermediate by backside attack. This has been mdependently 

confinned by Casey in a similar series of experiments.'" This also confirms that long 

lived y-cations do not exist in the reaction. The currently accepted mechanism follows path 

(b) in Scheme 7.2. 

Cp + Cp + 

PR3 PR3 

(b) (a) 

Figure 7.3. Synclinal (a) and anticlinal (b) isomers 
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Scheme 7.4 
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Experimental 

General 

All manipulations of reagents and products were carried out under a nitrogen atmo

sphere using a VACUUM/ATMOSPHERES glove box equipped with a model M040H Dri-

Train gas purification system or on a vacuum line using standard Schlenk techniques unless 

otherwise stated. All solvents were dried and distilled from puiple solutions of 

sodium/benzophenone. 'H NMR spectra were recorded on Nicolet 300 MHz, Varian VXR 

300 MHz or Varian/Unity 500 MHz spectrometers. Ethyl diazoacetate and 

trimethylsilyldiazomethane (purchased from Aldrich) were degassed by freeze-pump-thaw 

cycles and distilled under reduced pressure. Other diazo reagents were prepared by the 

oxidation of the appropriate hydrazone''*^ by yellow mercury(II) oxide in toluene. 

WARNING - several of the diazo reagents are reported to detonate spontaneously, N2CH(p-

tolyl) and N2CH(Mes) were therefore not isolated. Concentrations of N2CH(p-tolyl) and 

N2CH(Mes) in toluene solutions were determined by treating the diazo compound with 

benzoic acid and titrating the acid with NaOH.'"*^ [Os(TTP)]2 and (TTP)Os(CO)(Py) were 
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prepared by literature procedures.® GC analyses were performed with a HP 5890 Series H 

GC with a DB-5 capillary column (30 m, 0.32 mm, 0.25 |i) with the following conditions; 

Program A - initial temperature (T,) = 85 *C for 5 min, ramp rate (RR) = 20 'C/min, final 

temperature (1)) = 250 'C or Program B - T, = 100 "C for 2 min, RR= 10 'C/min 1} = 250 

'C. GC yields were determined for alkenes (Y^ and cyclopropanes Çïcp) using dodecane as 

an internal standard. 

Synthesis 

Ethyl-2-phenyl-l-cydopropanecarboxylic add ester (14). 

Method A. In a typical experiment, 3.4 mg (3.5 pmol) of (TrP)Os(CO)(Py) and 

styrene (0.22 mL, 1920 pmole) were vigorously stirred in toluene (3 mL). A toluene 

solution (12 mL) of NgCHCOgEt (0.10 mL, 952 jimole) was added dropwise over one hour. 

Addition of dodecane (0.10 mL, 44 mmole) was followed by GC analysis using program A: 

= 16(1)% Ycp = 54(1)% anti/syn = 9.0(1). And isomer 'H NMR (CDO;): 7.3-7.0 (m, 

Aryl), 4.15 (q, 2H, CH^CH^), 2.49 (m, IH), 1.87 (m, IH), 1.58 (m, IH), 1.3 (m, IH), 1.23 (t, 

3H, CH2C//3) ppm. Syn isomer 'H NMR (CDa^): 7.3-7.0 (m, Aryl), 3.85 (q, 2H, 

C/f^CHg), 2.50 (m, IH), 2.05 (m, IH), 1.71 (m, IH), 1.3 (m, IH), 0.95 (t, 3H, 

ppm. Assignment of the cyclopropane major isomer was made by comparison of the proton 

NMR to that of an authentic sample."**''"" 

Method B. In a typical experiment, 3.0 mg (1.7 pmol) of [CrTP)0s]2 and styrene 

(0.11 mL, 961 njnole) were vigorously stirred in toluene (3 mL). A toluene solution (12 

mL) of N2CHC02Et (0.10 mL, 952 |xmole) was added dropwise over one hour. Addition of 

dodecane (0.10 mL, 44 mmole) was followed by GC analysis using program A: = trace 
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Y„ = 79(2)% anti/syn = 10.2(1). 

Method C. In a typical experiment, 4.3 mg (4.5 junol) of CITP)0s=CHC02Et and 

styrene (0.10 mL, 874 pmole) were vigorously stirred in toluene (3 mL). A toluene solution 

(12 mL) of NgCHCOzEt (0.10 mL, 952 pmole) was added dropwise over one hour. Addition 

of dodecane (0.10 mL, 44 mmole) was followed by GC analysis using program A: = 

trace = 63(2)% anti/syn = 8.9(6). 

Method D, (TTP)0s=CHC02Et (3 mg, 3 pmole) were dissolved in CgDg (0.4 mL) 

in an NMR tube. Styrene (1.0 pL, 8.7 pmole) was added, the tube shaken vigorously and 

monitored by 'H NMR. After 4 h the reaction was 96% complete. 'H NMR (CgDg): 8.62 (s, 

8H, p-H), 7.94 (d, 8H, poiph-aryl), 7.28 (d, 8H, poiph-aiyl), 6.15 (br, styrene-aiyl), 2.40 (s, 

12H, CHj) ppm and signals for 14. The NMR yield for 14 is 73(5)%. GC confirms the 

presence of 14, anti/syn = 11.5(4). 

1 -(2,4,6-trimethylphenyl)-2-phenylcyclopropane (15). 

Using method A 15 was prepared Aom 1.8 mg (1.9 pmol) of (TTP)Os(CO)(Py), 0.10 

mL (874 pmole) styrene, and NgCHMes (20 mL, 0.033 M in toluene, 660 pmole). GC 

program B: Y^ = < 1%, Ycp = 100(10)%, anti/syn = 0.4(1). Assignment of the 

cyclopropane major isomer was made by 500 MHz 2D-N0ESY proton NMR. Major isomer: 

'H NMR CfiDg): 7.5-7.0 (m, 7H), 2.66 (s, 6H, CHg), 2.54 (s, 3H, CHg), 2.02 (m, IH), 1.97 

(m, IH), 1.40 (m, IH), 1.04 (m, IH). Minor isomer 'H NMR C^Dg): 7.5-7.0 (m, 7H), 2.45 

(s, 6H, CH3), 2.50 (s, 3H, CH3), 1.84 (m, IH), 1.76 (m, IH), 1.17 (m, IH), 1.02 (m, IH). 

MS(EI) M+ 236, 221, 143, 132, 115 (base), 91. 

Using method D, with (TTP)Os=CHMes (1.5 mg, 1.5 pmole) and styrene (0.40 pL, 
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3.5 limole), no cyclopropanation was observed after 21 h by proton NMR. 

Using method D, with (TTP)Os=CHMes (1.5 mg, 1.5 pmole) and styrene (0.18 mL, 

1570 pmole), no cyclopropanation was observed after 20 min by GC, Less than 1% of 

cyclopropane product was detected after 2 h by GC, 

Ethyl-3-n*octyI-l-cyclopropanecarboxylic acid ester (16). 

Using method A, 16 was prepared from 5.5 mg (5.7 pmol) of (TTP)Os(CO)(Py), 

0.18 mL (953 pmole) 1-decene, and NgCHCO^Et (0.10 mL, 952 ^ole). GC program B: 

= 31(1), YCF = 32(1)%, anti/syn = 4.3(1), GC analysis with an authentic sample of 16 

confirmed the identity of the cyclopropane products. Major isomer 'H NMR (CDQj): 4,00 

(q, 2H, CffzCHg), 1,39 (m, IH), 1.3-1.1 (m, 18H), 1,03 (m, IH), 0,77 (t, 3H, CHjCZ/j), 0,57 

(m, IH) ppm. Minor isomer 'H NMR (CDCl^): 4.01 (q, 2H, CffgCHg), 1,54 (m, IH), 1,3-

1.1 (m, 18H), 0.87 (m, IH), 0,79 (m, IH), 0.76 (t, 3H, ppm. 

Ethyl-2-methyl-2-phenyl-l-cycIopropanecarboxyiic add ester (17). 

Using method A, 17 was prepared from 4.5 mg (4.7 ^imol) of (TTP)Os(CO)(Py), 

0.13 mL (1000 pmole) o-methylstyrene, and NjCHCOjEt (0.10 mL, 952 (imole). GC 

program A: = 29(1), Ycp = 39(1)%, anti/syn = 2.8(1), Major isomer, as detennined by 

500 MHz 2D-N0ESY 'H NMR, has the ethyl carboxylate group anti to the phenyl group. 

Major isomer: % NMR (CDClg): 7,3-7,10 (m, 5H aiyl), 4,15 (m, 2H, C//2CH3), 1.92 (m, 

IH), 1.49 (s, 3H, CH3), 1.40 (m, IH), 1.26 (t, 3H, CKjCHj), 1.37 (m, IH) ppm. Minor 

isomer: 'H NMR (CDOg): 7,3-7,10 (m, 5H aryl), 3.8 (m, 2H, Cff^CH,), 1.86 (m, IH), 1.74 

(dd, IH), 1.43 (s, 3H CH3), 1.10 (dd, IH), 0,90 (t, 3H, Cii^CH^ ppm. 
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Ethyl-c^-3-methyl-/raii5-2-phenyI-r-cyclopropanecarboxyIic add ester (18). 

Using method A 18 was prepared from 3.7 mg (3.8 pmol) of (TTP)Os(CO)(Py), 0.12 

mL (926 ^imole) trans-P-methylstyrene, and NjCHCOjEt (0.10 mL, 952 pmole). GC 

program A: = 43(2), ¥„ = 13(2)%. 'H NMR (CDOj): 7.4-6.7 (m, 5H aryl), 3.99 (dq, 

2H, ŒîCHs), 2.50 (dd, IH), 1.98 (dd, IH), 1.35 (m, IH), 1.32 (d, 3H, CHj). 0.97 (t, 3H, 

CBjŒj), ppm. 

2-phenyl-l,l-bis-/?-toIylcydopropane (19). 

[(TTP)0S]2 (1.0 mg, 0.58 )jmole), styrene (0.20 mL, 1.75 mmole), and N2C(tolyl)2 

were vigorously stirred in THF (3 mL). After 4 days solvent was removed under reduced 

pressure. Yield was detennined by proton NMR integrations of poiphyrin P-pyrrole (8.18 

ppm) to cyclopropane signal at 2.78 ppm, and confirmed by integration of styrene resonances 

at 5.6 and 5.1 ppm. Y^p = 39(1)%. 'H NMR (CEDG): 7.4-6.8 (m, aryl), 2.75 (dd, IH), 1.81 

(dd, IH), 1.57 (dd, IH). MS(EI) M+ 298 amu. 

2,4-dicarboethoxy-l-phenyI[l-l-0]bicydobutane (20). 

Using method A, 20 was prepared from 3.6 mg (3.7 pmol) of (TTP)Os(CO)(Py), 50 

jiL (456 Mmole) phenylacetylene, and NjCHCOjEt (0.10 mL, 952 pmole). GC program A: 

Y^ = 41(1), Ycp = 11(1)%. Only one isomer observed assigned as exo-exo by 'H NMR. 'H 

NMR (QDg): 7.66 (d, 2H, aryl), 7.06 (m, 3H, aryl), 3.7 (m, 4H, Œ2CH3), 3.41 (s, IH), 1.71 

(s, 2H), 0.70 (t, 3H, CHgCVfg) ppm. 

Using method B, 20 was prepared from 4.1 mg (2.4 pmol) of [(TTP)0s]2, 0.50 mL 

(4.56 mmole) phenylacetylene in 6 mL toluene, and N2CHC02Et (l.(X) mL, 9.52 mmole) 24 
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mL toluene. GC program A: = 20(1), Y^p = 46(2)%. Only one isomer observed. 

MS(EI) M" 274, 245, 229, 201,173 amu. NMR (CgDg): 7.66 (dd, 2H, aryl), 7.06 (m, 3H, 

aiyl), 3.7 (m, 4H). 3.41 (s, IH), 1.71 (s, 2H), 0.70 (t, 6H). 

2,4-bis(2,4,6-triinethylphenyI)-l-phenyI[l-l-0]bicyclobutane (21). 

Using method A, 21 was prepared from 3.7 mg (4.0 nmol) of CITP)Os(CO)(Py), 

0.10 mL (912 [unole) phenylacetylene, and NjCHMes (31.6 mL, 0.045 M in toluene, 1440 

Minole). GC program Tj = lOO'C for 2 min, RR = lO'C/min for 3 min.(T = 130*C), RR = 

20'C/min, Tf =250 to end: Y^ = 2(1)%, Y^p = 77(3)%. MS(EI) exact mass found 

(calc.) 366.23454 (366.23475) amu. 'H NMR (CgDg): 7.1- 6.8 (m, QH5), 6.71 (s, 4H, m-

CgHz), 3.16 (m, IH), 2.16(s, 3H, CH3),2.47 (s, 3H, CH3), 2.35 (m, 2H), 2.21 (s, 3H, CH3), 

2.19 (s, 6H, CH3), 2.11 (s, 3H, CH3). Major isomer assigned as exo-exo based on 'H NMR. 

Crossover Experiment. 

(TTP)Os=CHMes (7.0 mg, 7.1 |miole) and styrene (0.80 mL, 6.99 mmole) were 

stirred in 3 mL of toluene. A toluene solution (10 mL) of ethyl diazoacetate (7.0 ^iL, 67 

fimole) was added dropwise over 10 min followed immediately by GC analysis. Both 14 

(a/s = 9.8(2)) and 15 (a/s = 0.4) were observed. 

Results 

Slow addition of a toluene solution of ethyl diazoacetate over 2 h to a vigorously 

stirred solution of [(TTP)0s]2 and styrene results in the formation of ethyl-2-phenyl-l-

cyclopropanecarboxylic acid ester (14) in 79(2)% as determined by GC. The antilsyn (a/s) 
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h= 

ch-

7 5 3 1 

Figure 7.4. 2D-N0ESY of Ethyl-2-raethyl-2-phenyl-l-cyclopropanecarboxylic acid ester (17) 

Cross peaks (resonances off the diagonal) indicate that the two corresponding protons 

are proximal. The following crosspeaks were observed. Anti isomer. Ha-Hf, Ha-He, 

Ha-Hb, Hb-Hc, Hc-Hd, Hc-Hg, Hd-Hg, He-Hf. Syn isomer Ha'-Hb', Ha'-Hd*, Ha'-

Hg', Hb'-Hc', Hb'-Hd', Hc'-Hd', Hc'-Hg', He -Hf. 
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Table 7.1. Data for cyclopropanation reactions 

1 catalyst substrate diazoreagent ratio olefin cyclopropane | 
A B [A/B] 

yield c/t yield a/s 

(TTP)Os(CO)(py) styrene N2CHC02ET 2 11(2) a 54(1) 9.0 (1) 

(TTP)Os(CO)(py) styrene NGCHCOZET 1 12(1) a 65(3) 9.5 (2) 

(TTP)Os(CO)(py) styrene NjCHCOjEt .55 26(1) a 44(1) 9.0 (3) 

[OS(TTP)]2 styrene NJCHCOÎET 1 trace a 79(2) 10.2(1) 

(TTP)0sCHC02Et styrene NGCHCOZET 1 trace a 63(2) 8.9(6) 

(TTP)Os(CO)(py) 1-decene N2CHC02Et 1 31(1) a 32(1) 4.3(1) 

(TrP)Os(CO)(py) a-
methyl 
styrene 

N2CHC02Et 1 29(1) a 39(1) 2.8(1) 

(TTP)Os(CO)(py) trans-P" 
methyl 
styrene 

N2CHC02Et 1 43(2) 23 13(2) b 

(TTP)Os(CO)(py) styrene N2CH(Mes) 1.3 trace c 100(10) 0.42(2) 

[OS(TTP)]2 d styrene N2C(Tolyl)2 1 39(5) 
e 

(TTP)Os(CO)(py) PhCCH N2CHC02Et .5 41(1) a 11(1) 
f.g 

h 

[OS(TTP)]2 PhCCH N2CHC02Et .5 20(1) a 46(2) 
0 

h 

(TrP)Os(CO)(py) PhCCH NJCHCMES) .6 2(1) 3 77(3) 
f 

7(1) 

(TrP)OsCH(Mes) styrene N.R. 

(TrP)0sCHC02Et styrene 73(5) 11.5(4) 

" cis isomer is the only one detected " Ethyl-trans-2-phenyl-cis-3-methylcyclopropane-r-
carboxylicacid ester is the only isomer observed ° isomer not confirmed, assumed to be cis '' 
reaction conducted in THF ® determined by NMR ' bicyclobutanes only cyclopropane 
product, no cyclopropene has been observed ® one hour addition Only one isomer 
observed ' ten hour addition 
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isomer ratio is 10.2:1 (see Table 7.1). Under similar conditions, the carbene complex 

(TrP)0s=CHC02Et catalytically produces cyclopropane 14 in 63(2)% yield with an isomer 

ratio of a/s = 8.9(6). The oxygen and water stable complex (TTP)Os(CO)(Py) also serves as 

a catalyst precursor. When a toluene solution of ethyl diazoacetate was added over 2 h to a 

vigorously stirred solution of (TTP)Os(CO)(Py) and styrene, 14 was obtained in 65(3)% yield 

with a/s = 9.5(2). 

Alkenes such as a-mettiylstyrene, frow-p-methylstyrene, and 1-decene also are 

cyclopropanated with ethyl diazoacetate when (TTP)Os(CO)(Py) was employed as the 

catalyst However in these cases, significantly lower yields (13 - 39%) were observed. The 

synlanti ratios are also lower with 1-decene and a-methyl styrene substrates. The 

assignments of the syn and anti isomers for 17 were confirmed by 2D-N0ESY proton NMR, 

Figure 7.4. Somewhat surprisingly, only one product isomer was detected for the 

cyclopropanation reaction of /ra/is-|5-methylstyrene with ethyl diazoacetate. The 

cyclopropane product was determined to have the ethyl ester group trans to the phenyl and 

cis to the methyl by 500 MHz 2D-N0ESY 'H NMR. 

Mesityl diazomethane and bis(p-tolyl)diazomethane also were found to 

cyclopropanate styrene using (TTP)Os(CO)(Py) as the catîdyst precursor. Mesityl 

diazomeûiane was paiticulaily effective and quantitatively produces cyclopropanes with 

styrene. The antUsyn ratio for the mesitylphenylcyclopropane of 0.4 was confirmed by 

proton NMR and GC. The assignment of the product isomers was based on a 'H 2D-

NOESY experiment conducted on a 500 MHz instrument. Cyclopropanation using bis(p-

tolyl)diazomethane required several days at ambient temperature to obtain a moderate yield 

of cyclopropane, 39(5)%. In this case, the reaction was perfonned in THF using the more 
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active catalyst [(TTP)0s]2. The choice of solvent was based on prior alkene forming 

reactions (Chapter 6) in which product formation was strongly solvent dependent. In that 

case, tetratolylethylene was rapidly formed in THF, while azine and imine products were 

prepared over the course of several days in benzene. 

When phenylacetylene is the substrate, double cyclopiopanation occurs to produce 

[1.1.0]bicyclobutanes. Using [(TTP)0s]2 as the precatalyst, rather than (TTP)Os(CO)Py) 

significantly improves the yield of bicyclobutane (Table 7.1). Surprisingly, the conversion of 

styrene and mesityl diazomethane to bicyclobutane 21 occurs in high yield, 77(3)%. 

The stoichiometric reaction of the carbene complex (TTP)0s=CHC02Et and styrene 

produces the cyclopropane product 14. Qualitatively this reaction is slower than the catalytic 

production of 14, requiring two hours to completely convert a few milligrams of 

(TTP)0s=CHC02Et to the cyclopropane. The antilsyn ratio of 11.5(4) is similar to that 

observed in the catalytic reactions suggesting that the carbene complex may be an 

intermediate in the catalytic cycle. In addition, a new porphyrin complex was also observed 

by 'H NMR"® and formulated as a ic-bound styrene complex (TTP)Os(CgH5CH=CH2)n. 

n=l or 2. The observed styrene signals are broadened and shifted upfield indicating that a 

fast exchange process is occurring between coordinated and unbound styrene. Upon 

decreasing the ratio of styrene to osmium porphyrin, the alkene signals broaden into the 

baseline. Addition of pyridine to a mixture of (TTP)0s=CHC02Et and styrene resulted in 

fast decomposition to unidentified products. In this case, neither diethyl maleate nor 

cyclopropane 14 were observed. 

The stoichiometric reaction of (TTP)Os=CHMes and styrene only occurs at elevated 

styrene concentrations. A 1000 fold excess of styrene only produces a trace (< 1%) of the 
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desired cyclopropane after several hours. Addition of pyridine had no observed effect A 

crossover experiment using (TTP)Os=CHMes, styrene and ethyl diazoacetate produced both 

14 and IS with antilsyn ratios of 9.8 and 0.4, respectively. 

Discussion 

The stereoselective reaction of styrene and ethyl diazoacetate to produce 

predominantly a/ift-ethyl-2-phenyl-l-cyclopropanecarboxylic acid ester (14) is effectively 

catalyzed by osmium porphyrin complexes in moderate to good yields. The stereoselectivity 

produced by osmium poiphyrin catalysts, a/s = 9.5, is considerably higher than the best value 

reported in the literature for the cyclopropanation of styrene with ethyl diazoacetate, a/s = 

3.3."' This is also the ojçosite stereoselectivity observed for the same reaction catalyzed by 

rhodium porphyrins reported by Callot'®* and Kodadek.'®^ '®® Although [(TTP)0s]2 is a more 

active cyclopropanation catalyst than (TTP)Os(CO)(Py), the carbonyl complex is more 

convenient to use due to ease of preparation and handling and only suffers from a small drop 

in cyclopropane yields. Table 7.1. Product stereoselectivity of the two catalysts are virtually 

the same. A 1:1 ratio of styrene to ethyl diazoacetate results in die best yield when using 

(TTP)Os(CO)(Py). 

The catalytic formation of cyclopropanes from alkenes and diazo reagents in the 

presence of (TTP)Os(CO)(Py) is a general reaction. Using the bulky diazo reagent 

NgCHMes, styrene is cyclopropanated in excellent yield. The side reaction of alkene 

formation in this case is nearly eliminated. Only a trace (< 1%) of l,2-bis(mesityl)ethene is 

present in the product mixture. As expected based on previous woric, the preferred 

stereoisomer is ayw-1 -(2,4,6-trimetiiylphenyl)-2-phenylcyclopropane (15), an opposite 
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stereochemistry to that of the ethyl diazoacetate derived cyclopropane product. Doyle has 

demonstrated that cyclopropanadon using diazo esters preferentially forms the anti-

isomer.^^®" "® In contrast, phenyl diazomethane under similar reaction conditions favors the 

ay/f-cyclopropane.'^^ The stereoselectivity for mesityl diazomethane and styrene is only 

moderate when (TTP)Os(CO)(Py) is the catalyst, a/s = 0.4. Increasing the bulkiness of the 

diazo reagent with two non-hydrogen substituents lowers both the yield and the rate of the 

reaction. Cyclopropanating styrene with N^^tolyl); requires several days to reach 

completion. The yield of 2-phenyl-1,1 -bis^-tolylcyclopropane (20) was only 39(5)%. The 

remaining N2C(tolyl)2 is converted to azine and bis(tolyl)imine. Based on these results, a 

wide variety of diazo reagents may be effectively utilized in cyclopropanating styrene in the 

presence of osmium poiphyrin catalysts. 

Production of cyclopropanes from other alkenes and ethyl diazoacetate was also 

examined. Cyclopropane yields are much lower for 1-decene (32 %) than for styrene (65 

%). This difference may be due to the ability of an aromatic substituent to stabilize the 

partial positive charge which develops at the y-carbon of the transition state (see scheme 

7.2). Based on product yields, 1,1- and 1,2-disubstituted alkenes are also less active towards 

cyclopropanation than styrene. The low yield (39 %) when using a-methylstyrene may 

reflect unfavorable steric interactions between the substrate and the metaUoporphyrin carbene 

intermediate. Steric interactions are apparently enhanced, when /ra/w-p-methylstyrene 

styrene is the substrate. Steric interactions apparently allow only one avenue of approach for 

rrans-p-methylstyrene since only one stereoisomer is observed by GC and 'H NMR. The 

observed isomer has the ethyl ester group trans to the phenyl and cis to the methyl based on 

2D-N0ESY 'H NMR. 
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A vast majority of cyclopropanation catalysts transfomi alkynes to cyclopropenes. 

However, only a few are able to doubly cyclopropanate alkynes to generate the 

bicyclobutanes/^^ Suiprisingly (TrP)Os(CO)(Py) and [(TTP)0s]2 catalytically produce 

exo-exo-2,4-dlcait)oethoxy-l-phenyl[l-l-0]bicyclobutane (20) as the only product from 

phenyl acetylene and ethyl diazoacetate. The exo-exo assignment was made by the singlet at 

1.71 ppm in the 'H NMR for the protons on carbons 2 and 4. The exo-endo isomer should 

exhibit a doublet for these protons.'"' Mesityl diazomethane also produces bicyclobutanes 

from styrene in very good yield. Two isomers are observed by GC in a ratio of 7:1. Only 

the major isomer is observed by proton NMR and is assigned the exo-exo structure based oh 

a single signal at 2.3 for the protons geminal to the mesityl groups. The minor isomer is 

assumed to be exo-endo based on steric arguments. 

The mechanism for catalytic cyclopropanation reactions, as discussed above, is 

believed to involve nucleophilic attack on metal carbene complexes by alkenes. Although 

this proposed mechanism has gained wide acceptance, carbene complexes have never been 

isolated from or observed in catalytic cyclopropanation reactions. Nonetheless, the 

metalloporphyrin carbene complexes, (TTP)0s=CHC02Et, (TTP)Os=CHMes, and 

(TTP)Os=C(tolyl)2 could be intermediates in the osmium catalyzed reactions. Each of these 

complexes has been prepared and characterized by 'H and "C NMR. (TTP)Os=C(tolyl)2 has 

also been structurally characterized. 

In Older to test the intermediacy of osmium porphyrin carbene complexes in the 

catalytic cyclopropanation reactions, (TTP)0s=CHC02Et was treated with an excess of 

styrene. Cyclopropane 14 was fomied stoichiometrically over several hours and identified by 

proton NMR and GC analysis. The isomer ratio of 14 produced in this reaction was 
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a/s = 11.5(4). The similarity of the stoichiometric and catalytic a/s product ratios strongly 

supports a catalytic cycle in which an osmium carbene complex is initially formed and 

subsequently transferred to an alkene. 

No reaction occurred when (TTP)Os=CHMes was treated with one equivalent of 

styrene and monitored by proton NMR and GC. Even with a 1000-fold excess of styrene no 

product was detected by GC after 20 minutes. After 2 hours only a trace (<1%) of 

cyclopropane was observed. 

Qualitatively the rate of reaction for the stoichiometric reactions are slower than the 

catalytic processes. This suggests that the 16-electron osmium carbene complex is activated 

under catalytic conditions. For the isoelectronic rhodium porphyrin catalyzed reactions, 

activation by alkene coordination has been suggested by Kodadek.^®® However, in the 

stoichiometric osmium cyclopropanation reactions, excess alkenes qualitatively do not 

produce the same rate as observed in the catalytic processes. Thus, the 16-electron osmium 

carbene complexes are not activated by alkene coordination. Activation of the carbene 

complexes by addition of pyridine as a sixth ligand was also not observed. Alternatively, a 

bis(carbene) osmium porphyrin complex may serve as the active intermediate. This is 

apparently the case for the catalytic production of alkenes ftom diazo reagents (Chapter 6). 

In a crossover experiment, the addition of ethyl diazoacetate to a stirred solution of 

(TTP)Os=CHMes and styrene produced both cyclopropanes 14 and 15 in less than 20 

minutes. This strongly supports the involvement of an activated bis(carbene) intermediate 

(TTP)0s(=CHC02Et)(=CHMes). Either carbene ligand may then be attacked by styrene to 

produce a cyclopropane. The a/s ratios of for both cyclopropanes 14 and 15 produced in the 

crossover reaction are comparable to those observed under catalytic conditions using 
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(TTP)Os(CO)(Py) as the catalyst In the carbonyl complexes, a trans CO is apparently a 

reasonable activating ligand. A mechanism consistent with the available data has been 

proposed in Scheme 7.5, where L may be either a carbene ligand or a carbonyl ligand. 

Conclusion 

Several significant aspects have evolved firom the use of osmium meso-tetiSL-p-

tolylporphyrin complexes as catalysts for the cyclopropanation of a variety of alkenes by 

diazo compounds. This system provides the highest antilsyn isomer ratio reported to date 

(a/s = 10) for the catalytic cyclopropanation of styrene by ethyl diazoacetate. The activity of 

(TTP)Os(CO)(Py) appears to be general, catalyzing the cyclopropanation of a variety of 

alkenes with diazo reagents. Unlike typical cyclopropanation catalysts which produce 

cyclopropenes from alkyne substrates, the osmium porphyrin catalysts generate 

bicyclobutanes from phenyl acetylene. The firet catalytically active metal carbene complex, 

(TTP)0s=CHC02Et, has been isolated and evidence is presented for it as an important 

species in the catalytic cycle. Evidence has also been presented for the intermediacy of a 

biscarbene osmium porphyrin in the catalytic cycle for cyclopropanation. The neutral 

osmium complexes reported here are isoelectronic with the cationic rhodium porphyrin 

complexes observed by Kodadek. The positive charge on the liiodium complexes may be an 

important factor which activates the carbene ligand towards nucleophilic attack by the alkene. 

Nonetheless, the neutral osmium complexes appear to be as active as the rhodium complexes 

as catalysts. Moreover, the lack of a positive charge in the osmium system appears to be an 

important factor which allows isolation of the osmium carbene complexes. 
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Scheme 7^ 

Os(TTP) 
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